Syntheses of 6 β-hydroxyshikimic acid and its derivatives

A. John Blacker, ${ }^{\text {c }}$ R. John Booth, ${ }^{\boldsymbol{a}}$ Gareth M. Davies ${ }^{\boldsymbol{b}}$ and James K. Sutherland ${ }^{*, a}$
${ }^{a}$ Chemistry Department, Victoria University of Manchester, Manchester M13 9PL, UK
${ }^{\text {b }}$ Zeneca Pharmaceuticals, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
' Zeneca FCMO. Leeds Road, Huddersfield HD2 1FF, UK

Abstract

The conversion of ($1 S, 2 S$)-3-bromocyclohexa-3,5-diene-1,2-diol, ($5 S, 6 S$)-5,6-dihydroxycyclohexa-1,3-diene1 -carbonitrile and methyl ($5 S, 6 S$)-5,6-dihydroxycyclohexa-1,3-diene-1-carboxylate into 6β-hydroxyshikimic acid and protected derivatives is described.

Introduction

The $6 x$ - and 6β-fluoroshikimic ${ }^{1}$ acids $\mathbf{1}$ and $\mathbf{2}$ are of interest in exploring the enzymology ${ }^{2}$ of the shikimic acid pathway which leads to the biosynthesis of the aromatic amino acids. We have previously described two synthetic routes to the fluorinated compounds from quinic acid. ${ }^{1.3}$ In the latter route we demonstrated that suitably protected 6-hydroxyshikimic acids could be converted efficiently into the fluoro compounds with $\mathrm{Et}_{2} \mathrm{NSF}_{3}$. The main problem with the routes from quinic acid lies in the dehydration of quinic to shikimic derivatives which could only be accomplished satisfactorily with a sulfurane. In an effort to develop more efficient routes we have examined the cis-1,2-diols, formed by oxidation of mono-substituted benzenes with the bacterium Pseudomonas putida, ${ }^{4}$ as starting materials. \dagger

Results and discussion

Bromobenzene is oxidised by the bacterium to ($1 S, 2 S$)-3-bromocyclohexa-3,5-diene-1,2-diol 3. The diene has been protected as the acetal 4 and dihydroxylated to give ${ }^{5}$ the diol 7 which we have converted into the bis-acetal 8 (90%). Reaction ${ }^{6}$ of 8 with $\mathrm{Bu}^{2} \mathrm{Li}-\mathrm{Et}_{2} \mathrm{O}$ at $-109^{\circ} \mathrm{C}$ and then CO_{2} gave an acid (67%) which was converted into the ester $17 \dagger(80 \%)$ by reaction with MeI-CsF. ${ }^{7}$ The protecting groups were removed $\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right)$ to give methyl 6β-hydroxyshikimate $\mathbf{1 8}$ identical with the material prepared ${ }^{3}$ previously. Suitable precursors for the fluoro compounds require differentiation of the diol systems and of the 5 -and 6 -hydroxy groups. To this end the diol 7 was converted into the bis- $\mathrm{Bu}^{1} \mathrm{Me}_{2} \mathrm{Si}$ (TBDMS) ether 9 (72%) and carboxylated (70%) as before to form the acid 19. Attempts to combine esterification and removal of the isopropylidene group under a variety of conditions led to complete deprotection or unchanged acid 19. Reaction with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ converted 19 into the ester $20(99 \%)$, but a series of attempts to remove the isopropylidene group selectively failed.

A switch of protecting groups should allow deprotection of the 3,4 -diol system under neutral conditions, so the bisTBDMS ether 5 was prepared (90%) and hydroxylated with OsO_{4} - N -methylmorpholine N -oxide (NMMNO)-water ${ }^{8}$ to give the diol $10(66 \%)$. The regio- and stereo-chemistry of reaction was established by ${ }^{1} \mathrm{H}$ NMR spectroscopy; in particular the ${ }^{3} J$ of 9.5 Hz between $2-\mathrm{H}$ and $3-\mathrm{H}$ established the cis-diol systems to be anti to each other. The diol $\mathbf{1 0}$ was converted into the acetal 11, but attempts to effect $\mathrm{Br}-\mathrm{Li}$

[^0]exchange at a variety of temperatures failed; presumably the bulk of the TBDMS group at the 4 -position sterically hinders the exchange. We then investigated Pd and Ni catalysed carbonylations which can be carried out with an unprotected hydroxy group at C-6. Since the conditions for these reactions are severe, the isopropylidene protection was replaced by the more robust cyclohexylidene; the diol 10 was converted into the acetal $12(90 \%)$ and the silyl protecting groups removed to give the diol 13 (75\%). Attempts to effect Pd-catalysed methoxycarbonylation led only to traces of the ester 22; however reaction ${ }^{9}$ of the bromide 13 with $\left[\mathrm{Ni}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]-\mathrm{Et}_{3} \mathrm{~N}-\mathrm{MeOH}$ gave the ester $22(70 \%)$ contaminated with an unknown impurity which could only be removed by reversed phase HPLC.

The $\mathrm{Me}_{3} \mathrm{Si}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2}$ (SEM) group ${ }^{10}$ can be removed under neutral conditions and should cause less hindrance in the vicinity of the CBr bond so the bis-ether 6 was prepared (97%) and dihydroxylated under standard conditions. In this case two isomers were obtained (72%) in a ratio of $17: 1$, the major component being the diol 14 ; its structure was established by ${ }^{1} \mathrm{H}$ NMR spectroscopy and further transformations. The minor product is likely to be the diol obtained by reaction at the opposite face of the molecule. The cyclohexylidene acetal 15 was prepared (72%) from the diol 14 . Carboxylation using the previous conditions gave the acid in low yield which was improved to 79% by change of solvent to hexane and raising the temp. to $-78^{\circ} \mathrm{C}$; debrominated alkene (10%) was also isolated. The ester $21(72 \%$) was prepared (MeI-CsF) from the acid and reaction ${ }^{11}$ with $\mathrm{MgBr}_{2}-\mathrm{BuSH}$ (1 equiv.) gave (68%) a $7.5: 1$ mixture of the mono-SEM ethers 23 and 24. The structures were established by conversion of the compounds into the acetates and comparison of ${ }^{1} \mathrm{H}$ NMR spectra; most notably a doublet at $\delta 4.83$ (J 3.4) in the spectrum of 24 shifted to $\delta 6.13$ in the spectrum of its acetate. Reaction of the ester 21 with an excess of $\mathrm{MgBr}_{2}-\mathrm{BuSH}$ gave the diol 22 (75%) identical with the material prepared previously. Reaction of 22 with an excess of TBDMSCl- $\mathrm{Et}_{3} \mathrm{~N}$ gave the mono-silyl ether $25(50 \%)$ which can be converted efficiently into the 6α-fluoro compound.

When this work was completed ($5 S, 6 S$)-5,6-dihydroxy-cyclohexa-1,3-diene-1-carbonitrile 35 , prepared by the oxidation of PhCN with Pseudomonas putida UV4 ${ }^{15}$, became avaliable ${ }^{12}$ and it was converted into the isopropylidene acetal 36 (93%). Hydroxylation with $\mathrm{OsO}_{4}-\mathrm{NMMNO}$-water gave the diol $39(53 \%$, together with 36% of recovered starting material); negative evidence supported the assigned stereochemistry in that the diacetate of 39 exhibited only vicinal NOEs and no transannular enhancements. All attempts to hydrolyse the diol 39 and the derived bis-acetonide 40 to the corresponding acids under basic conditions led to decomposition. Reaction of the nitrile 40 with $\mathrm{NaOH}-\mathrm{H}_{2} \mathrm{O}_{2}$ formed the amide 38 and attempts to hydrolyse the nitrile with nitrilase enzymes were unsuccessful. We then attempted to prepare a

$16 \mathrm{R}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5} \mathrm{R}^{6}=\mathrm{CMe}_{2}$
$17 \mathrm{R}=\mathrm{OMe}, \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{R}^{5} \mathrm{R}^{6}=\mathrm{CMe}_{2}$
$18 \mathrm{R}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{H}$
$19 \mathrm{R}=\mathrm{OH}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{TBDMS}, \mathrm{R}^{5} \mathrm{R}^{6}=\mathrm{CMe}_{2}$
$20 \mathrm{R}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{TBDMS}, \mathrm{R}^{5} \mathrm{R}^{6}=\mathrm{CMe}_{2}$
$21 \mathrm{R}=\mathrm{OMe}, \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{SEM}$
$22 \mathrm{R}=\mathrm{OMe}, \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{H}$
$23 \mathrm{R}=\mathrm{OMe}, \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{C}\left(\mathrm{CH}_{2}\right)_{\mathrm{S}}, \mathrm{R}^{5}=\mathrm{H}, \mathrm{R}^{6}=\mathrm{SEM}$
$24 \mathrm{R}=\mathrm{OMe}, \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{R}^{5}=\mathrm{SEM}, \mathrm{R}^{6}=\mathrm{H}$
$25 \mathrm{R}=\mathrm{OMe}, \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{R}^{5}=\mathrm{TBDMS}, \mathrm{R}^{6}=\mathrm{H}$
$27 \mathrm{R}=\mathrm{H}, \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{TBDMS}$
$28 \mathrm{R}=\mathrm{OH}, \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{R}^{5}=\mathrm{R}^{6}=$ TBDMS
$29 \mathrm{R}=\mathrm{OMe}, \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{TBDMS}$
$30 \mathrm{R}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{TBDMS}$
$31 \mathrm{R}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5} \mathrm{R}^{6}=\mathrm{CMe}_{2}$
$32 \mathrm{R}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{4}=\mathrm{OAC}, \mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{TBDMS}$
$33 \mathrm{R}=\mathrm{OMe}, \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{R}^{5}=\mathrm{H}, \mathrm{R}^{6}=$ TBDMS
$34 \mathrm{R}=\mathrm{OMe}, \mathrm{R}^{3}=\mathrm{OAC}, \mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5}=\mathrm{R}^{6}=$ TBDMS

$35 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
$36 \mathrm{R}^{\mathrm{i}} \mathrm{R}^{2}=\mathrm{CMe}_{2}$
$37 \mathrm{R}^{1}=\mathrm{R}^{2}=$ TBDMS
protected 6-fluoro nitrile which there was good reason to believe could be hydrolysed under acidic conditions to the fluoroshikimic acid. Dihydroxylation of the bis-ether 37 gave the diol $41(84 \%)$ accompanied by traces of the enone 53 and
the diol 50 . The cyclohexylidene acetal $\mathbf{4 2}$ was prepared by a standard method from the diol 41 (90%) and desilylated using $\mathrm{Bu}_{4} \mathrm{NF}$ to form the diol $\mathbf{4 3}(86 \%)$. At this stage we attempted to differentiate between the C-5 and C-6 hydroxy groups of 43. Selective silylation (TBDMSOSO 2 Me) gave mixtures so the diol

$39 \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5} \mathrm{R}^{6}=\mathrm{CMe}_{2}$ $40 \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{R}^{5} \mathrm{R}^{6}=\mathrm{CMe}_{2}$ $41 \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{H}, \mathrm{R}^{5}=\mathrm{R}^{6}=$ TBDMS $42 \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{R}^{5}=\mathrm{R}^{6}=$ TBDMS $43 \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{H}$ $44 \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{R}^{5} \mathrm{R}^{6}=\mathrm{SnBu}_{2}$ $45 \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{R}^{5}=\mathrm{H}, \mathrm{R}^{6}=\mathrm{TBDMS}$ $46 \mathrm{R}^{3} \mathrm{R}^{4}=\mathrm{C}\left(\mathrm{CH}_{2}\right)_{5}, \mathrm{R}^{5}=\mathrm{H}, \mathrm{R}^{6}=\mathrm{CH}_{2} \mathrm{Ph}$

$47 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
$48 \mathrm{R}^{1} \mathrm{R}^{2}=\mathrm{CMe}_{2}$
$49 \mathrm{R}^{1}=\mathrm{R}^{2}=$ TBDMS

53
$50 \mathrm{X}=\mathrm{CN}, \mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{TBDMS}$
$51 \mathrm{X}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{5}=\mathrm{R}^{6}=$ TBDMS
$52 \mathrm{X}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{R}^{5} \mathrm{R}^{6}=\mathrm{CMe}_{2}$

55
was converted ${ }^{13}$ into the tin ether $44\left(\mathrm{Bu}_{2} \mathrm{SnO}\right)$ which was treated with TBDMSCl-CsF to form the alcohol 45 (30%) as the sole silylated product; its structure was established by conversion of the compound into its acetate which in the ${ }^{1} \mathrm{H}$ NMR spectrum showed a downfield shifted signal at $\delta 5.45$ (J 6.7 and 3.7) and the appropriate proton connectivities in a 2DCOSY experiment. Reaction of 44 with $\mathrm{PhCH}_{2} \mathrm{Br}$ gave the ether $46(38 \%)$. These failures to protect selectively the $5-\mathrm{OH}$ group of the nitrile 43 contrasts with the successful protection of the ester 22; the greater steric size of the ester function and its hydrogen bonding to the 6 -hydroxy group could contribute to the different reactivities. With the failure of hydrolytic methods for the conversion of the nitrile 42 into an acid function it was reduced with $\mathrm{Bu}^{i}{ }_{2} \mathrm{AlH}$ (DIBAL) to the aldehyde 27 (70%), oxidised with $\mathrm{NaClO}_{2}{ }^{14}$ to the acid 28 and esterified with MeI$\mathrm{K}_{2} \mathrm{CO}_{3}$ to form the ester 29 (80% overall). Desilylation with pyridinium (HF$)_{n}$ gave the diol $22(90 \%)$ identical with that prepared previously.

The requirement for the ester function in distinguishing between the 5- and 6-hydroxy groups and the difficulties in converting the nitrile into an ester suggested the diene 47 as an attractive starting material. $\mathrm{PhCO}_{2} \mathrm{Me}$ was oxidised with an

Scheme 1 Reagents: i, $\mathrm{OsO}_{4}-\mathrm{NMMNO}-$ water; ii, 1,1-dimethoxycyclohexane- H^{+}; iii, $\mathrm{Bu}{ }^{t} \mathrm{Li}$, then CO_{2}, then $\mathrm{MeI}-\mathrm{CsF}$; iv. $\mathrm{MgBr}-\mathrm{BuSH}^{2}$; v, TBDMSCl $-\mathrm{Et}_{3} \mathrm{~N}$: vi, $\mathrm{Bu}_{4} \mathrm{NF}$; vii, $\left[\mathrm{Ni}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]-\mathrm{Et}_{3} \mathrm{~N}$: viii, DIBAL; ix, NaClO_{2} then $\mathrm{MeI}-\mathrm{K}_{2} \mathrm{CO}_{3}$; x , pyridinium $(\mathrm{HF})_{n}$

Fig. 1 Connectivities and J values for conformers of 54
aqueous culture of Pseudomonas putida UV4 ${ }^{15}$ to the ester 47 (53%): the structure followed from spectroscopic data and relative and absolute stereochemistry were established by conversion of the compound into methyl 6β-hydroxyshikimate 18. The silyl ether 49 was prepared and dihydroxylated under standard catalytic conditions to give an inseparable 10:1 mixture (46%) of the diols 51 and $\mathbf{3 0}$. With the isopropylidene acetal 48 dihydroxylation yielded the diols 31 (27%) and 52 (18%) : acid hydrolysis converted 31 into the ester 18 and 5β hydroxyshikimic acid proving the absolute and relative stereochemistry of the diene 47. The extent of reaction at the 1,2-position in these compounds was both disappointing and puzzling in light of our previous results and the report ${ }^{16}$ that methyl 5-tert-butyldimethylsiloxycyclohexa-1,3-diene-1-carboxylate is hydroxylated in high yield at the 3,4 -position. It is unlikely that the direct steric effect of a 6 -substituent would favour 1,2-reaction over 3,4, but indirectly the substituent could cause the carboxymethyl group to rotate out of conjugation with the double bond and thus changing the electron
distribution in the diene; MM2 calculations support this view. We also examined the Prevost reaction ($\mathrm{AgOAc}-\mathrm{AcOH}-\mathrm{I}_{2}$ and then water) with compound 49; chromatographic separation of the product gave two fractions. The minor fraction (17%) gave a ${ }^{1} \mathrm{H}$ NMR spectrum consistent with a $7: 1$ mixture of the 4 - and 3-monoacetates of $\mathbf{3 0}$; in CDCl_{3} solution the major acetate was converted partially and slowly into the minor. The structure of the second product was more difficult to determine. Its ${ }^{1} \mathrm{H}$ NMR spectrum at ambient temperature showed broadened signals and cooling to $-60^{\circ} \mathrm{C}$ resolved the spectrum into that of two conformers which, together with a 2D-COSY experiment, provided the data in Fig. 1 which is best accommodated by the two half-chair conformers of the acetate 54. Attack of $\mathrm{H}_{2} \mathrm{O}$ on the acetoxonium 55 at $\mathrm{C}-4$ would form 54, while attack at the acetoxonium centre could give rise to the monoacetates of $\mathbf{3 0}$.

The three routes to the protected 6β-hydroxyshikimic acid are summarised in Scheme 1; the overall yields from the diols are (a) 10.7%, (b) 14% and (c) 16.2%.

Experimental

NMR spectra were recorded on a Varian XL300 or a Bruker AC300 spectrometer 300 MHz for ${ }^{1} \mathrm{H}$ and 75 MHz for ${ }^{13} \mathrm{C}$. Spectra were measured in CDCl_{3} unless otherwise stated. Mass spectra were recorded on a Kratos Concept instrument coupled to a DS90/MACH 3 data system and accurate mass measurements ($\pm 4 \mathrm{ppm}$) using a Kratos MS25 instrument with a DS55 data system. Chemical ionisation determinations used NH_{3} as the carrier gas. IR spectra were recorded on a PerkinElmer 1710 FT spectrometer as thin films. $[\alpha]_{\mathrm{D}}$ Values are recorded in units of $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{2} \mathrm{~g}^{-1}$. The term 'work-up' implies washing the organic extract with brine, drying the solution with MgSO_{4}, filtration and concentration of the extract under reduced pressure. Light petroleum refers to the fraction with distillation range $40-60^{\circ} \mathrm{C}$.
(1S,2S)-3-Bromocyclohexa-3,5-diene-1,2-diol 3
A 10% solution of compound $\mathbf{3}$ in EtOAc (10% solution; $15 \mathrm{~cm}^{3}$) was added to vigorously stirred light petroleum ($180 \mathrm{~cm}^{3}$) cooled to $0^{\circ} \mathrm{C}$. A solid separated and filtration and drying under reduced pressure gave the diene $3(1.4 \mathrm{~g})$ which was used without further purification or characterisation. This material was stable for a few days if kept in a freezer, but best results were obtained using freshly isolated material.

(3aR,5aS,8aS,8bR)-4-Bromo-2,2,7,7-tetramethyl-3a,5a,8a,8b-tetrahydrobenzo[1,2-d; 3,4-d']bis[1,3]dioxole 8

A solution of the diol $7(0.95 \mathrm{~g}), 2,2$-dimethoxypropane $(0.7$ cm^{3}) and a catalytic amount of toluene- p-sulfonic acid (PTSA) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ under Ar was stirred for 1 h . The reaction mixture was filtered through a pad of Merck 9385 Silica Gel. The pad was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$ and the filtrate concentrated under reduced pressure to furnish the crude product as an oil which was purified by chromatography on silica gel $60(\mathrm{EtOAc}$-light petroleum; $5: 95)$ to give the ketal $\mathbf{8}$ as an oil ($1.06 \mathrm{~g}, 95 \%$) $[\alpha]_{\mathrm{D}}+84.7$ (c 1.1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}} 1.38(6 \mathrm{H}$. s), $1.41(6 \mathrm{H}, \mathrm{s}), 4.64(1 \mathrm{H}$, dd, $J 5$ and 2.4$)$ and $6.08(1 \mathrm{H}, \mathrm{m})$; $r_{\text {max }}{ }^{\prime} \mathrm{cm}^{1} 2990$ and 1650: $m=(\mathrm{EI}) 307$ and 305 ; (CI) 307 and 305 (Found: $\mathrm{M}^{+}, 305.0386 . \mathrm{C}_{12} \mathrm{H}_{1}{ }^{79} \mathrm{BrO}_{4}$ requires $M, 305.0389$).
(3aR,5aR,8aS,8bR)-2,2,7,7-Tetramethyl-3a,5a,8a,8b-tetra-hydrobenzo[1,2-d; 3,4-d'] bis [1,3] dioxole-4-carboxylic acid $\mathrm{Bu}^{t} \mathrm{Li}\left(1.7 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in pentane; $1 \mathrm{~cm}^{3}$) was added dropwise to a stirred solution of the acetonide $\mathbf{8}(0.5 \mathrm{~g})$ in dry $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3}\right)$ at $-109^{\circ} \mathrm{C}$ under N_{2}. After 15 min at $-109^{\circ} \mathrm{C}$ dry CO_{2} was bubbled into the reaction mixture. The cooling bath was then removed and the reaction mixture was allowed to warm to room temp. A white precipitate was formed. Saturated aq. $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$ was added to the mixture which was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The aqueous phase was acidified with $10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ to pH 1 and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined organic extracts were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated under reduced pressure to yield the acid as an oil $(0.29 \mathrm{~g}, 67 \%) ; \delta_{\mathrm{H}} 1.31(3 \mathrm{H} . \mathrm{s}) .1 .33(3 \mathrm{H}$. s), $1.38(3 \mathrm{H}, \mathrm{s}) .1 .40(3 \mathrm{H}, \mathrm{s}), 4.60(1 \mathrm{H}, \mathrm{m}), 4.69(2 \mathrm{H}, \mathrm{m}), 4.94(1$ $\mathrm{H}, \mathrm{d}, J 5.7)$ and $6.83(1 \mathrm{H}, \mathrm{s}) ; v_{\text {max }} \mathrm{cm}^{-1} 2990$ and $1705 ; m=(\mathrm{EI})$ 271, (CI) 288 (Found: $\mathrm{M}^{+}, 271.1178 . \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{6}$ requires $M+$ H, 271.1182).
(3aR,5aR,8aR,8bR)-Methyl 2,2,7,7-tetramethyl-3a,5a,8a,8b-tetrahydrobenzo[1,2-d; 3,4-d']bis[1,3]dioxole-4-carboxylate 17 $\mathrm{CsF}(0.42 \mathrm{~g})$ and $\mathrm{MeI}\left(0.17 \mathrm{~cm}^{3}\right)$ were added to a stirred solution of the above acid (0.5 g) in $\mathrm{Me}_{2} \mathrm{NCHO}\left(8 \mathrm{~cm}^{3}\right)$ under Ar. The reaction mixture was stirred for 16 h and then poured into a mixture of saturated aq. $\mathrm{NaHCO}_{3}\left(40 \mathrm{~cm}^{3}\right)$ and water ($40 \mathrm{~cm}^{3}$). The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 30 \mathrm{~cm}^{3}\right)$. Work-up gave an oil purified by chromatography on silica gel 60 (EtOAc-light petroleum; 1:9) to furnish the ester 17 as an oil $\left(0.43 \mathrm{~g} .80 \%\right.$), $\delta_{\mathrm{H}} 1.31(3 \mathrm{H}, \mathrm{s}), 1.33(3 \mathrm{H} . \mathrm{s}), 1.38(3 \mathrm{H}, \mathrm{s}), 1.41(3$ $\mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 4.59(1 \mathrm{H}, \mathrm{m}), 4.68(2 \mathrm{H}, \mathrm{m}), 4.97(1 \mathrm{H}, \mathrm{d}, J$ 5.7) and 6.72 ($1 \mathrm{H}, \mathrm{m}$); $v_{\text {max }} \mathrm{cm}^{-1} 1730$; m/= (EI) 285; (CI) 302 (Found: $\mathrm{M}^{+}, 285.1331 . \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6}$ requires $M+\mathrm{H}, 285.1338$).

(3R,4R,5R,6R)-Methyl 3,4,5,6-tetrahydroxycyclohex-1-ene-1-

 carboxylate 18Water $\left(1 \mathrm{~cm}^{3}\right)$ and $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\left(0.5 \mathrm{~cm}^{3}\right)$ were added to the ester $17(0.157 \mathrm{~g})$ in tetrahydrofuran (THF) ($2 \mathrm{~cm}^{3}$). The reaction mixture was stirred overnight and then concentrated under reduced pressure. The residue was azeotroped with PhMe to give an oil which was purified by dry column chromatography on silica gel $60 \mathrm{H}\left(\mathrm{Pr}^{\mathrm{i} O H}-\mathrm{CHCl}_{3}, 2: 8\right)$ to give the ester 18 as a colourless oil ($0.114 \mathrm{~g}, 90 \%$) identical with a sample prepared previously, $\delta_{\mathrm{H}} 3.73(3 \mathrm{H}, \mathrm{s}), 3.8(1 \mathrm{H}$, dd, $J 10$ and 3.5), $3.87(1 \mathrm{H}$, dd, $J 10$ and 4), 4.48 (1 H , dd. $J 5$ and 4), 4.6 ($1 \mathrm{H}, \mathrm{d}, J 3.5$) and
$6.88(1 \mathrm{H}, \mathrm{d}, J 5): m=(\mathrm{EI}) 205$ and (CI) 222 (Found: M^{+}. 205.0719. $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{6}$ requires $M+\mathrm{H}, 205.0712$).
(3aS,6R,7R,7aS)-4-Bromo-6,7-di-tert-butyldimethylsiloxy-2,2-dimethyl-3a,6,7,7a-tetrahydro-1,3-benzodioxole 9
TBDMSOSO $2_{2} \mathrm{CF}_{3}\left(1.56 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred solution of the diol $7(0.6 \mathrm{~g})$ and imidazole (0.6 g) in $\mathrm{Me}_{2} \mathrm{NCHO}$ ($6 \mathrm{~cm}^{3}$) under Ar. After 1.5 h the reaction mixture was poured into water $\left(30 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 15 \mathrm{~cm}^{3}\right)$. Work-up gave an oil purified by chromatography on silica gel $60(\mathrm{EtOAc}$-light petroleum; 2:98) to give the ether 9 as a solid $(0.79 \mathrm{~g}, 71 \%) .[\alpha]_{\mathrm{D}}-69.1\left(c 1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}} 0.09(3 \mathrm{H}, \mathrm{s})$, $0.095(3 \mathrm{H}, \mathrm{s}) .0 .10(6 \mathrm{H}, \mathrm{s}), 0.88(9 \mathrm{H}, \mathrm{s}) .0 .92(9 \mathrm{H}, \mathrm{s}) .1 .4(3 \mathrm{H}$, s). $1.42(3 \mathrm{H}, \mathrm{s}) .4 .13(1 \mathrm{H}, \mathrm{m}), 4.28(1 \mathrm{H} . \mathrm{t} . J 5.2), 4.37(1 \mathrm{H}, \mathrm{m})$. $4.6(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and 1.2$)$ and $5.98(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}-4.835$, $-4.735,-4.495 .-4.353,18.13,18.34,25.77,26.03,26.22$. 27.53. 69.12, 72.08, 77.24, 110.09, 121.51 and 132.91; $r_{\text {max }} \mathrm{cm}^{-1}$ 1640: $m=(\mathrm{EI}) 495$ and 493; (CI) 512 and 510 (Found: C, 51.1; H, 8.4; $\mathrm{M}^{+} .510 .2076 . \mathrm{C}_{21} \mathrm{H}_{41} \mathrm{BrO}_{4} \mathrm{Si}_{2}$ requires $\mathrm{C}, 51.1 ; \mathrm{H}, 8.4 \%$; M, 510.2071).
(3a $R, 6 R, 7 R, 7 a R$)-6,7-Di-tert-butyldimethylsiloxy-2,2-dimethyl-3a,6,7,7a-tetrahydro-1,3-benzodioxole-4-carboxylic acid 19
$\mathrm{Bu}^{t} \mathrm{Li}\left(1.7 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in pentane; $0.65 \mathrm{~cm}^{3}$) was added to a stirred solution of the ether $9(0.5 \mathrm{~g})$ in $\mathrm{Et}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ cooled to $-109^{\circ} \mathrm{C}$ under Ar. After 30 min . dry CO_{2} was bubbled into the reaction mixture which was then allowed to warm to room temp. The solution became very viscous and was diluted with EtOAc-light petroleum ($2: 8 ; 20 \mathrm{~cm}^{3}$) and then loaded directly onto a dry silica gel 60 H column, eluted first with EtOAc-light petroleum (1:9:3 $3 \times 20 \mathrm{~cm}^{3}$) and then with AcOH-EtOAc (0.1:99.9: $\left.3 \times 20 \mathrm{~cm}^{3}\right)$. The latter fractions furnished the acid $19(0.37 \mathrm{~g}$. 79%), $\operatorname{mp} 135-136{ }^{\circ} \mathrm{C}$ (from EtOAc-light petroleum), $\delta_{\mathrm{H}} 0.07$ (3 H. s). 0.09 ($3 \mathrm{H}, \mathrm{s}$), 0.127 ($3 \mathrm{H}, \mathrm{s}$) $.0 .131(3 \mathrm{H}, \mathrm{s}) .0 .83$ ($9 \mathrm{H}, \mathrm{s})$, $0.94(9 \mathrm{H}, \mathrm{s}) .1 .35(3 \mathrm{H}, \mathrm{s}) .1 .4(3 \mathrm{H}, \mathrm{s}), 4.2$ ($1 \mathrm{H} . \mathrm{m}$), $4.32(1 \mathrm{H}$. dd. $J 5.9$ and 3.9), $4.6(1 \mathrm{H}, ~ s), 5.0(1 \mathrm{H}$. dd, $J 5.9$ and 1$)$ and 6.91 ($1 \mathrm{H}, \mathrm{t}, J 1.7$): $r_{\max } \mathrm{cm}^{-1} 2930.1700$ and $1650 ; m=(\mathrm{CI}) 459$ and 476 (Found: \mathbf{M}^{+}. 459.2594. $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{Si}_{2} \mathrm{O}_{6}$ requires $M+\mathrm{H}$. 459.2598).
(3aR,6R,7R,7aR)-Methyl 6,7-di-tert-butyldimethylsiloxy-2,2-
dimethyl-3a,6,7,7a-tetrahydro-1,3-benzodioxole-4-carboxylate 20
$\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$ was added dropwise to a solution of the acid 19 $(0.59 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ until a permanent yellow colour was obtained. The excess of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was destroyed by adding AcOH to the solution which was then filtered through a pad of Merck 9385 Silica Gel with EtOAc as eluent. The filtrate was concentrated under reduced pressure to furnish the ester 20 as an oil ($0.61 \mathrm{~g}, 99 \%$). $\delta_{\mathrm{H}} 0.07(3 \mathrm{H}, \mathrm{s}), 0.09(3 \mathrm{H}, \mathrm{s}), 0.13(6 \mathrm{H}, \mathrm{s})$, $0.83(9 \mathrm{H}, \mathrm{s}), 0.94(9 \mathrm{H}, \mathrm{s}), 1.34(3 \mathrm{H}, \mathrm{s}) .1 .4(3 \mathrm{H} . \mathrm{s}) .3 .8(3 \mathrm{H} . \mathrm{s})$, $4.18(1 \mathrm{H}, \mathrm{m}), 4.3(1 \mathrm{H} . \mathrm{dd}, J 6$ and 4$), 4.56(1 \mathrm{H}, \mathrm{s}), 5.02(1 \mathrm{H}$, dd, $J 6$ and 1$)$ and $6.77(1 \mathrm{H}, \mathrm{t}, J 1.6)$: $v_{\text {max }} \mathrm{cm}^{-1} 2930,1730$ and 1655; $m=$ (EI) 472: (CI) 490 (Found: $\mathrm{M}^{+}, 472.2662$. $\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Si}_{2}$ requires $M, 472.2676$).

(1S,2S)-1,2-Di-tert-butyldimethylsiloxy-3-bromocyclohexa-3,5diene 5

TBDMSOSO ${ }_{2} \mathrm{CF}_{3}\left(7.9 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred solution of the diene $3(3.0 \mathrm{~g})$ and imidazole $(6.4 \mathrm{~g})$ in $\mathrm{Me}_{2} \mathrm{NCHO}$ ($30 \mathrm{~cm}^{3}$) under Ar. After 2 h the reaction mixture was poured into water ($150 \mathrm{~cm}^{3}$) and extracted with $\mathrm{Et}_{2} \mathrm{O}$ $\left(3 \times 75 \mathrm{~cm}^{3}\right)$. Work-up gave an oil (8.26 g) purified by dry column chromatography on silica gel 60 H (EtOAc-light petroleum; gradient elution $0: 1$ to $2: 8$) to give the ether 5 as an oil ($6.0 \mathrm{~g}, 90 \%$) ; $\delta_{\mathrm{H}} 0.24(3 \mathrm{H}, \mathrm{s}), 0.25(3 \mathrm{H}, \mathrm{s}), 0.26(3 \mathrm{H}, \mathrm{s}), 0.27$ $(3 \mathrm{H}, \mathrm{s}), 1.00(9 \mathrm{H}, \mathrm{s}), 1.05(9 \mathrm{H}, \mathrm{s}), 4.2(1 \mathrm{H}, \mathrm{d}, J 5), 4.68(1 \mathrm{H}$, $\mathrm{m}), 5.93(1 \mathrm{H}$, ddd, $J 9.6 .5 .2$ and 2.3$), 6.02(1 \mathrm{H}, \mathrm{dm}, J 9.6)$ and
6.49 ($1 \mathrm{H} . \mathrm{d}, J 5.2$); m / z (EI) 420 and 418 ; (CI) 438 and 436 (Found: $\mathrm{M}^{+}, 418.1368 . \quad \mathrm{C}_{18} \mathrm{H}_{35}{ }^{79} \mathrm{BrO}_{2} \mathrm{Si}_{2}$ requires M, 418.1359).

($1 R, 2 R, 5 S, 6 S$)-4-Bromo-5,6-di-tert-butyldimethylsiloxycyclo-hex-3-ene-1,2-diol 10

The ether $5(6 \mathrm{~g})$ was dissolved in $\mathrm{Bu}{ }^{t} \mathrm{OH}\left(60 \mathrm{~cm}^{3}\right)$ containing N methylmorpholine N-oxide (NMMNO) (1.7 g), water $\left(0.6 \mathrm{~cm}^{3}\right.$) and a catalytic amount of OsO_{4} under Ar. The reaction mixture was stirred for 18 h during which time it turned black. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ $(15 \mathrm{~g})$ and $\mathrm{EtOAc}\left(60 \mathrm{~cm}^{3}\right)$ were added to the reaction mixture which was then stirred for a further 1 h . The reaction mixture was filtered through a pad of Merck 9385 Silica Gel, pre-eluted with EtOAc, and the pad was washed with several portions of EtOAc. The filtrate was concentrated under reduced pressure to furnish the crude product as an oil, purification of which by chromatography on silica gel 60 (EtOAc -light petroleum; 2:8) gave the diol 10 as an oil ($2.2 \mathrm{~g}, 66 \%$), $[\alpha]_{\mathrm{D}}-7.5$ (c 2.2 in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \delta_{\mathrm{H}} 0.13(3 \mathrm{H}, \mathrm{s}), 0.14(3 \mathrm{H}, \mathrm{s}), 0.15(3 \mathrm{H}, \mathrm{s}), 0.20(3 \mathrm{H}$, s), $0.91(9 \mathrm{H}, \mathrm{s}), 0.94(9 \mathrm{H}, \mathrm{s}), 2.42(1 \mathrm{H}, \mathrm{s}), 2.72(1 \mathrm{H}, \mathrm{s}), 4.04(1$ H, dd, $J 9.5$ and 2.7), 4.1 (1 H , dd, $J 9.5$ and 3.9), $4.28(1 \mathrm{H}, \mathrm{d}, J$ $2.7), 4.37(1 \mathrm{H}, \mathrm{t}, J 4.4)$ and $6.15(1 \mathrm{H}, \mathrm{d}, J 4.9)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3410$, 2955 and $1640 ; m / z$ (EI) 454 and 452 ; (CI) 472 and 470 (Found: $\mathrm{M}^{+}, 472.1725 . \mathrm{C}_{18} \mathrm{H}_{41}{ }^{81} \mathrm{BrNO}_{4}$ requires $M, 472.1738$).
(3a $R, 6 S, 7 S, 7 \mathrm{a} R$)-5-Bromo-6,7-di-tert-butyldimethyIsiloxy-2,2-dimethyl-3a,6,7,7a-tetrahydro-1,3-benzodioxole 11
The diol $10(0.87 \mathrm{~g}), 2,2$-dimethoxypropane $\left(0.28 \mathrm{~cm}^{3}\right)$ and a catalytic amount of PTSA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ were stirred for 30 min under Ar. The reaction mixture was loaded directly onto a dry column of silica gel 60 H which was then eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to furnish the acetal 11 as an oil $(0.75 \mathrm{~g}, 80 \%) ; \delta_{\mathrm{H}} 0.11$ (3 $\mathrm{H}, \mathrm{s}), 0.12(3 \mathrm{H}, \mathrm{s}), 0.14(3 \mathrm{H}, \mathrm{s}), 0.17(3 \mathrm{H}, \mathrm{s}), 0.91(18 \mathrm{H}, \mathrm{s}), 1.36$ ($3 \mathrm{H}, \mathrm{s}$), $1.45(3 \mathrm{H}, \mathrm{s}), 3.88(1 \mathrm{H}, \mathrm{m}), 4.18(1 \mathrm{H}, \mathrm{s}), 4.32(1 \mathrm{H}, \mathrm{t}, J$ $7.2), 4.71(1 \mathrm{H}$, dd, $J 6.8$ and 3.5$)$ and $6.15(1 \mathrm{H}, \mathrm{d}, J 3.5)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1640 ; m /=(\mathrm{CI}) 512$ and 510 (Found: $\mathrm{M}^{+}, 510.2065$. $\mathrm{C}_{21} \mathrm{H}_{45}{ }^{79} \mathrm{BrO}_{4} \mathrm{Si}_{2}$ requires $M, 510.2071$).

(3aR,4S,5S,7aR)-6-Bromospiro[3a,4,5,7a-tetrahydro-1,3-benzodioxole-2,1'-cyclohexane]-4,5-diol 13

A solution of the ether $9(2.3 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(14 \mathrm{~cm}^{3}\right)$ and $\mathrm{Bu}_{4} \mathrm{NF}$ ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in THF; $16.6 \mathrm{~cm}^{3}$) was stirred for 3.5 h after which it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$, water $\left(10 \mathrm{~cm}^{3}\right)$ and brine ($10 \mathrm{~cm}^{3}$). Work-up gave an oil which was purified by chromatography on silica gel 60 H (EtOAc -light petroleum; gradient elution, $1: 4$ to $4: 1$) to give the diol 13 as a white solid ($1.03 \mathrm{~g}, 75 \%$), mp $124-126^{\circ} \mathrm{C}$ (from EtOAc-light petroleum); $[\alpha]_{\mathrm{D}}-18.7$ (c 2.1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}} 1.39(2 \mathrm{H}, \mathrm{s}), 1.59(18 \mathrm{H}, \mathrm{s})$, 2.69 ($1 \mathrm{H}, \mathrm{s}$), 2.74 ($1 \mathrm{H}, \mathrm{s}), 4.23$ ($1 \mathrm{H}, \mathrm{m}$), 4.37 ($2 \mathrm{H}, \mathrm{m}$), 4.64 (1 H, m) and 6.24 ($1 \mathrm{H}, \mathrm{d}, J 3.8$); $v_{\text {max }} / \mathrm{cm}^{-1} 3420,2930$ and 1640 ; $m_{/}=$(EI) 306 and 304 ; (CI) 324 and 322 (Found: C, 47.0; H, 5.6; $\mathrm{M}^{+}, 304.0311 . \mathrm{C}_{12} \mathrm{H}_{17}{ }^{79} \mathrm{BrO}_{4}$ requires $\mathrm{C}, 47.2 ; \mathrm{H}, 5.61 \% ; M$, 304.0311).
(3aR,6S,7S,7aR)-5-Bromo-6,7-di-tert-butyldimethylsiloxyspiro-[3a,6,7,7a-tetrahydro-1,3-benzodioxole-2,1'-cyclohexane] 12
A solution of 1,1-diethoxycyclohexane (1.0 g), the diol 10 (2.2 g), and a catalytic amount of camphorsulfonic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($20 \mathrm{~cm}^{3}$) was stirred for 3 h under Ar after which it was treated with saturated aq. $\mathrm{NaHCO}_{3}\left(5 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. Work-up gave an oil purified by chromatography on silica gel 60 H ($\mathrm{EtOAc}-\mathrm{light}$ petroleum; $1: 99$) to give the acetal 12 as an oil $(2.3 \mathrm{~g}, 90 \%) ; \delta_{\mathrm{H}} 0.01(3 \mathrm{H}, \mathrm{s}), 0.13(3 \mathrm{H}, \mathrm{s}), 0.14$ $(3 \mathrm{H}, \mathrm{s}), 0.16(3 \mathrm{H}, \mathrm{s}), 0.90(18 \mathrm{H}, \mathrm{s}), 1.4(2 \mathrm{H}, \mathrm{m}), 1.56(8 \mathrm{H}, \mathrm{m})$, $3.85(1 \mathrm{H}, \mathrm{m}), 4.15(1 \mathrm{H}, \mathrm{s}), 4.3(1 \mathrm{H}, \mathrm{t}, J 7), 4.72(1 \mathrm{H}, \mathrm{dd}, J 7$ and 3.3) and 6.17 ($1 \mathrm{H}, \mathrm{d}, J 3.3$); $v_{\max } / \mathrm{cm}^{-1} 2930$ and $1644 ; m / z$ (EI) 533 and 531 (Found: M^{+}, 531.1964. $\mathrm{C}_{24} \mathrm{H}_{43}{ }^{79} \mathrm{BrO}_{4} \mathrm{Si}_{2}$ requires $M+\mathrm{H}, 531.1961$).
(3aR,6R,7R,7aS)-Methyl 6,7-dihydroxyspiro[3a,6,7,7a-tetra-hydro-1,3-benzodioxole-2,1'-cyclohexane]-5-carboxylate 22
(a) A solution of the diol $13(0.2 \mathrm{~g}), \mathrm{Et}_{3} \mathrm{~N}\left(1.2 \mathrm{~cm}^{3}\right)$, $\left[\mathrm{Ni}(\mathrm{CO})_{2}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\right](0.63 \mathrm{~g})$ and $\mathrm{MeOH}\left(1 \mathrm{~cm}^{3}\right)$ in THF $\left(6 \mathrm{~cm}^{3}\right)$ was stirred for 24 h in a heavy-wall sealed tube at $60^{\circ} \mathrm{C}$ under Ar. After being cooled in ice the tube was opened and the reaction mixture diluted with EtOAc-light petroleum (1:1) and applied to a column of silica gel 60 H . Elution with the same solvent mixture gave the ester $22(0.125 \mathrm{~g})$ contaminated with an unknown compound. A pure sample of 22 was obtained by HPLC on a Dynamax $60 \AA$ column using $\mathrm{CH}_{3} \mathrm{CN}$-water ($1: 1$) as eluent; $[\alpha]_{\mathrm{D}}-24.0\left(c 1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}} 3.85(3 \mathrm{H}, \mathrm{s}), 4.13(1$ $\mathrm{H}, \mathrm{dd}, J 6.0$ and 3.6$), 4.47(1 \mathrm{H}, \mathrm{t}, J 6.0), 4.70(1 \mathrm{H}, \mathrm{d}, J 3.6), 4.81$ $(1 \mathrm{H}, \mathrm{dd}, J 6.0$ and 3.6$)$ and $6.96(1 \mathrm{H}, \mathrm{d}, J 3.6) ; \delta_{\mathrm{C}} 23.729$, 24.020, 24.975, 35.175, 37.661, 52.325, 65.254, 70.287, 71.383, $74.732,110.622,130.377,137.392$ and 162.017: $v_{\text {max }} / \mathrm{cm}^{-1} 3385$ and $1720 ; m / z(E I) 284 ;(C I) 285$ and 302 (Found: $\mathbf{M}^{+}, 284.1259$. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{6}$ requires $M, 284.1260$).
(b) $\mathrm{MgBr}_{2}\left(1 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O} ; 2.5 \mathrm{~cm}^{3}\right)$ and $\mathrm{BuSH}(0.18$ cm^{3}) were added to a stirred solution of the methyl ester 32 (0.3 $\mathrm{g})$ in $\mathrm{Et}_{2} \mathrm{O}\left(3 \mathrm{~cm}^{3}\right)$, under Ar. The reaction mixture was stirred for 1.5 h and then treated with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(30 \mathrm{~cm}^{3}\right)$. The crude product was extracted with EtOAc $\left(3 \times 30 \mathrm{~cm}^{3}\right)$ and worked up to give an oil which was purified by chromatography on silica gel $60(\mathrm{EtOAc}$-light petroleum; $1: 3)$ to give the diol 22 ($0.117 \mathrm{~g}, 75 \%$).
(c) Pyridinium (HF) $\left(1.0 \mathrm{~cm}^{3}\right)$ was added to a solution of the ester $28(1.0 \mathrm{~g})$ in THF ($2.5 \mathrm{~cm}^{3}$) in a polyethylene reaction vessel; an exotherm was observed. After $16 \mathrm{~h} \mathrm{Et}_{3} \mathrm{~N}\left(3.75 \mathrm{~cm}^{3}\right)$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ and Merck 9385 Silica were added to the reaction mixture which was then concentrated under reduced pressure and purified as above to give the ester $22(0.5 \mathrm{~g}, 90 \%)$.

(5S,6S)-1-Bromo-5,6-bis(2'-trimethylsilylethoxymethoxy)-cyclohexa-1,3-diene 6

2-(Trimethylsilyl)ethoxymethyl (SEM) chloride ($3.66 \mathrm{~cm}^{3}$) was added dropwise to a stirred solution of the diene $8(1.31 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(7.5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ containing $\mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{NEt}\left(6 \mathrm{~cm}^{3}\right)$ and a catalytic amount of 4-(dimethylamino)pyridine under Ar. The reaction mixture was stirred at room temp. for 1.5 h after which a further portion of SEM chloride ($1 \mathrm{~cm}^{3}$) was added to it. After a further 1 h the reaction mixture was poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50$ cm^{3}) and $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(20 \mathrm{~cm}^{3}\right)$. Work-up gave an oil purified by chromatography on silica gel 60 (EtOAc-light petroleum; $5: 95$) to furnish diene 6 as an oil $(3.0 \mathrm{~g}, 97 \%) ; \delta_{\mathrm{H}} 0.05$ $(9 \mathrm{H}, \mathrm{s}), 0.06(9 \mathrm{H}, \mathrm{s}), 1.0(4 \mathrm{H}, \mathrm{m}), 3.65(4 \mathrm{H}, \mathrm{m}), 4.36(1 \mathrm{H}, \mathrm{d}, J 8$ and 5$), 4.63(1 \mathrm{H}, \mathrm{m}), 4.83(2 \mathrm{H}, \mathrm{s}), 4.9(2 \mathrm{H}, \mathrm{s}), 5.9(1 \mathrm{H}$, ddd, J $9.6,5.6$ and 2.3), $6.01(1 \mathrm{H}, \mathrm{dd}, J 9.6$ and 2.3$)$ and $6.48(1 \mathrm{H}, \mathrm{d}, J$ 5.6); $m /=$ (CI) 470 and 468.

($1 R, 2 R, 5 S, 6 S$)-4-Bromo-5,6-bis(2'-trimethylsilylethoxy-

 methoxy)cyclohex-3-ene-1,2-diol 14The ether $6(1.26 \mathrm{~g})$ was dissolved in $\mathrm{Bu}^{t} \mathrm{OH}\left(60 \mathrm{~cm}^{3}\right)$ containing NMMNO (0.86 g), water ($2 \mathrm{~cm}^{3}$) and a catalytic amount of OsO_{4} under Ar. After the reaction mixture had been stirred for 19 h , during which time it turned black, it was treated with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(15 \mathrm{~g})$ and $\mathrm{EtOAc}\left(60 \mathrm{~cm}^{3}\right)$ and stirred for a further 1 h. The reaction mixture was then filtered through a pad of Merck 9385 Silica Gel pre-eluted with EtOAc and the pad was washed with several portions of EtOAc. The filtrate was concentrated under reduced pressure to give an oil purified by chromatography on silica gel 60 (EtOAc-light petroleum; 3:7) to give (1S,2S,5S,6S)-4-bromo-5,6-bis(2'-trimethylsilylethoxy-methoxy)cyclohex-3-ene-1,2-diol $(0.063 \mathrm{~g}, 5 \%) .[\alpha]_{\mathrm{D}}-15.8$ (c 1.0 in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}} 0.06(18 \mathrm{H}, \mathrm{s}), 1.0(4 \mathrm{H}, \mathrm{m}), 3.72(4 \mathrm{H}, \mathrm{m})$, $3.91(1 \mathrm{H}, \mathrm{m}), 4.05(3 \mathrm{H}, \mathrm{m}), 4.44(1 \mathrm{H}, \mathrm{d}, J 3.6), 4.81(1 \mathrm{H}$, d, $J 7), 4.88(1 \mathrm{H}, \mathrm{d}, J 7), 4.91(1 \mathrm{H}, \mathrm{d}, J 7), 5.00(1 \mathrm{H}, \mathrm{d}, J 7)$ and $6.32(1 \mathrm{H}, \mathrm{d}, J 3.5) ; v_{\max } / \mathrm{cm}^{-1} 3480 ; m=(\mathrm{Cl}) 504$ and

502 (Found: $\mathrm{M}^{+}, 502.1657 . \mathrm{C}_{18} \mathrm{H}_{41}{ }^{79} \mathrm{BrNO}_{6} \mathrm{Si}_{2}$ requires M, 502.1656) and the diol $14(1.26 \mathrm{~g}, 67 \%) ; \delta_{\mathrm{H}} 0.06(9 \mathrm{H}, \mathrm{s}), 0.07$ $(9 \mathrm{H}, \mathrm{s}), 1.01(4 \mathrm{H}, \mathrm{m}), 3.6(2 \mathrm{H}, \mathrm{m}), 3.9(2 \mathrm{H}, \mathrm{m}), 4.01(1 \mathrm{H}, \mathrm{dd}, J$ 10 and 3.6), 4.1 ($1 \mathrm{H}, \mathrm{dd}, J 10$ and 4.2), $4.38(1 \mathrm{H}, \mathrm{t}, J 4.2), 4.50$ $(1 \mathrm{H}, \mathrm{d}, J 3.6), 4.76(1 \mathrm{H}, \mathrm{d}, J 7), 4.87(1 \mathrm{H}, \mathrm{d}, J 7), 4.90(1 \mathrm{H}, \mathrm{d}$, $J 7), 4.98(1 \mathrm{H}, \mathrm{d}, J 7)$ and $6.34(1 \mathrm{H}, \mathrm{d}, J 5.3) ; v_{\max } / \mathrm{cm}^{-1} 3400$ and 2953; $m /=$ (CI) 504 and 502 (Found: M^{+}, 502.1657. $\mathrm{C}_{18} \mathrm{H}_{41}{ }^{79} \mathrm{BrNO}_{6} \mathrm{Si}_{2}$ requires $M, 502.1656$).

(3aR,6S,7S,7aR)-5-Bromo-6,7-bis(2'-trimethylsilylethoxy-methoxy)spiro[3a,6,7,7a-tetrahydro-1,3-benzodioxole-2,1'cyclohexane] 15

A solution of 1,1-diethoxycyclohexane (0.29 g), the diol 14 (0.75 g , and a catalytic amount of camphorsulfonic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($7.5 \mathrm{~cm}^{3}$) was stirred under Ar for 10 min after which it was treated with saturated aq. $\mathrm{NaHCO}_{3}\left(30 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$. Work-up gave an oil purified by chromatography on silica gel 60 H (EtOAc -light petroleum; $6: 94)$ to furnish the ether $15(0.63 \mathrm{~g}, 72 \%) ; \delta_{\mathrm{H}} 0.06(9 \mathrm{H}, \mathrm{s}), 0.065$ ($9 \mathrm{H}, \mathrm{s}$), $1.02(4 \mathrm{H}, \mathrm{m}), 1.43(2 \mathrm{H}, \mathrm{s}), 3.75(4 \mathrm{H}, \mathrm{m}), 4.07(1 \mathrm{H}, \mathrm{dd}$, $J 8$ and 3.2), 4.43 ($1 \mathrm{H}, \mathrm{d}, J 3.2$), $4.48(1 \mathrm{H}, \mathrm{dd}, J 8$ and 6.2$), 4.69$ ($1 \mathrm{H}, \mathrm{dd}, J 6.2$ and 3.8), $4.87(2 \mathrm{H}, \mathrm{s}), 4.88(1 \mathrm{H}, \mathrm{d}, J 7), 4.92(1 \mathrm{H}$. $\mathrm{d}, J 7$) and 6.33 ($1 \mathrm{H}, \mathrm{d}, J 3.8$); $v_{\max } / \mathrm{cm}^{-1} 2950$ and 1640; $m=$ (CI) 584 and 582 (Found: $\mathrm{M}^{+}, 582.2287 . \mathrm{C}_{24} \mathrm{H}_{49}{ }^{79} \mathrm{BrNO}_{6} \mathrm{Si}_{2}$ requires $M, 582.2282$).

(3aR,6R,7R,7aR)-6,7-Bis(2'-trimethylsilylethoxymethoxy)-spiro[3a,6,7,7a-tetrahydro-1,3-benzodioxole-2,1'-cyclohexane]-5-carboxylic acid

$\mathrm{Bu}^{t} \mathrm{Li}\left(1.7 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in pentane; $1.56 \mathrm{~cm}^{3}$) was added to a stirred solution of the ketal $15(0.6 \mathrm{~g})$ in hexane $\left(6 \mathrm{~cm}^{3}\right)$ cooled $-78^{\circ} \mathrm{C}$ under Ar. After 25 min dry CO_{2} was bubbled into the reaction mixture which was then allowed to warm to room temp. with continued passage of CO_{2}. This resulted in the loss of most of the solvent. The residue was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ and treated with $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(50 \mathrm{~cm}^{3}\right)$ after which work-up gave an oil purified by chromatography on silica gel 60 (EtOAc-light petroleum: $1: 4$) to afford (3aS,6R.7R,7aS)-bis(2'-trimethyl-silylethoxymethoxy)spiro[3a,6,7,7a-tetrahydro-1,3-ben=o-dioxole-2,1'-cyclohexane $](0.05 \mathrm{~g}, 10 \%),[x]_{\mathrm{D}}-66.8$ (c 1.0 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}} 0.06(18 \mathrm{H}, \mathrm{s}), 0.97(4 \mathrm{H}, \mathrm{m}), 1.43(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.65$ $(8 \mathrm{H}, \mathrm{s}), 3.7(4 \mathrm{H}, \mathrm{m}), 4.03(1 \mathrm{H}, \mathrm{dd}, J 7.2$ and 3.4$) .4 .32(1 \mathrm{H}$. t. $J 3.4), 4.5(1 \mathrm{H}, \mathrm{t}, J 6.3), 4.71(1 \mathrm{H} . \mathrm{m}), 4.81(2 \mathrm{H} . \mathrm{s}) .4 .87(1 \mathrm{H}$. d. J 7). $4.90(1 \mathrm{H} . \mathrm{d}, J 7)$ and $5.98(2 \mathrm{H} . \mathrm{m}) ; m=(\mathrm{CI}) 486$ (Found: $\mathrm{M}^{+}, 486.2816 . \mathrm{C}_{24} \mathrm{H}_{46} \mathrm{O}_{6} \mathrm{Si}_{2}$ requires $M, 486.2833$) and the title acid $(0.44 \mathrm{~g}, 79 \%)$, [$x]_{\mathrm{D}}-76.3\left(\mathrm{c} 1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}}$ $0.03(9 \mathrm{H}, \mathrm{s}) .0 .05(9 \mathrm{H}, \mathrm{s}), 0.95(4 \mathrm{H}, \mathrm{m}), 1.42(2 \mathrm{H}, \mathrm{s}) .1 .64(8 \mathrm{H}$. s), $3.7(7 \mathrm{H}, \mathrm{m}) .4 .61(1 \mathrm{H}, \mathrm{t}, J 7.5), 4.76(1 \mathrm{H}, \mathrm{d}, J 3), 4.82(2 \mathrm{H}$. s), $4.85(3 \mathrm{H}, \mathrm{m})$ and $7.12(1 \mathrm{H}, \mathrm{d}, J 3)$; in $\mathrm{C}_{6} \mathrm{D}_{6} 0.10(18 \mathrm{H}, \mathrm{brs})$. $1.12(4 \mathrm{H}, \mathrm{t}, J 8) .1 .33(2 \mathrm{H}, \mathrm{br}$ s), $1.6(4 \mathrm{H} . \mathrm{br}$ s), $1.71(2 \mathrm{H}, \mathrm{m})$. $1.84(2 \mathrm{H}, \mathrm{m}), 3.78(2 \mathrm{H}, \mathrm{m}), 3.93(2 \mathrm{H}, \mathrm{m}), 4.03(1 \mathrm{H}, \mathrm{dd}, J 8$ and 3), $4.86(2 \mathrm{H}, \mathrm{m}), 5.05(4 \mathrm{H}, \mathrm{m}), 5.16(1 \mathrm{H}, \mathrm{d}, J 3)$ and $7.29(1 \mathrm{H}$. d. $J 3$); $v_{\max } / \mathrm{cm}^{1} 1700 ; m / \approx(\mathrm{CI}) 530$ (Found: $\mathrm{M}^{+}, 530.2738$. $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{O}_{8} \mathrm{Si}_{2}$ requires $M, 530.2731$).

(3aR,6R,7R,7aS)-Methyl 6,7-bis(2'-trimethylsilylethoxy-methoxy)spiro[3a,6,7,7a-tetrahydro-1,3-benzodioxole-2,1'-cyclohexane]-5-carboxylate 21

MeI $\left(0.24 \mathrm{~cm}^{3}\right)$ was added to a solution of $\mathrm{CsF}(0.34 \mathrm{~g})$ and the above acid (0.4 g) in $\mathrm{Me}_{2} \mathrm{NCHO}\left(4 \mathrm{~cm}^{3}\right)$ under Ar and the mixture was stirred for 2.5 h . After this, further $\operatorname{CsF}(0.2 \mathrm{~g})$ and MeI ($0.09 \mathrm{~cm}^{3}$) were added to it. After 1.5 h the mixture was diluted with water $\left(20 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20$ cm^{3}). Work-up gave an oil purified by chromatography on silica gel 60 (EtOAc-light petroleum; 1:9) to give the ester 21 as an oil ($0.32 \mathrm{~g}, 78 \%$). $[x]_{\mathrm{D}}-60.9\left(c 0.65\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}} 0.04$ (9 $\mathrm{H}, \mathrm{s}), 0.06(9 \mathrm{H}, \mathrm{s}), 0.9(2 \mathrm{H}, \mathrm{s}), 0.97(2 \mathrm{H}, \mathrm{m}), 1.44(2 \mathrm{H}, \mathrm{br} s)$. $3.50(2 \mathrm{H}, \mathrm{m}), 3.72(3 \mathrm{H} . \mathrm{m}), 3.82(3 \mathrm{H}, \mathrm{s}) .4 .6(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and
1), $4.78(1 \mathrm{H}, \mathrm{d}, J 2.8), 4.81(2 \mathrm{H}, \mathrm{s}), 4.93(3 \mathrm{H}, \mathrm{m})$ and $7.03(1 \mathrm{H}$, d, $J 2.8$); in $\mathrm{C}_{6} \mathrm{D}_{6} 0.09(9 \mathrm{H}, \mathrm{s}), 0.1(9 \mathrm{H}, \mathrm{s}), 1.10(4 \mathrm{H}, \mathrm{m}), 1.32(2$ $\mathrm{H}, \mathrm{m}) .1 .6(4 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.46(3 \mathrm{H}, \mathrm{s}), 3.77(2 \mathrm{H}, \mathrm{m}), 3.9(2 \mathrm{H}, \mathrm{m})$, $4.04(1 \mathrm{H}$, dd, $J 8$ and 2.8), $4.85(1 \mathrm{H}$, dd, $J 8$ and 2.8$), 4.92(1 \mathrm{H}$, dd, $J 15$ and 8$), 5.03(2 \mathrm{H}, \mathrm{t}, J 8), 5.12(2 \mathrm{H}, \mathrm{m}), 5.17(1 \mathrm{H}, \mathrm{d}, J$ 2.7) and 7.14 ($1 \mathrm{H}, \mathrm{d}, J 2.7$); $v_{\text {max }} / \mathrm{cm}^{-1} 1725 ; m / \Sigma$ (EI) 544 ; (CI) 562 (Found: M^{+}, 544.2892. $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{O}_{8} \mathrm{Si}_{2}$ requires M, 544.2888).

(3aR,6R,7R,7aS)-Methyl 7(6)-hydroxy-6(7)-(2'-trimethyl-silylethoxymethoxy)spiro[3a,6,7,7a-tetrahydro-1,3-benzo-dioxole-2,1'-cyclohexane]-5-carboxylate 23 and 24

$\mathrm{MgBr}_{2}\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O} ; 0.46 \mathrm{~cm}^{3}\right)$ and $\operatorname{BuSH}\left(0.03 \mathrm{~cm}^{3}\right)$ were added to a stirred solution of the ester $21(0.05 \mathrm{~g})$ in $\mathrm{Et}_{2} \mathrm{O}$ $\left(0.5 \mathrm{~cm}^{3}\right)$, under Ar. After the reaction mixture had been stirred for 10 min it was treated with 10% aq. $\mathrm{NaOH}\left(2 \mathrm{~cm}^{3}\right)$ and extracted with EtOAc $\left(3 \times 5 \mathrm{~cm}^{3}\right)$. Work-up gave an oil purified by chromatography on silica gel 60 (EtOAc-light petroleum; 1:3) to give the ether 23 as an oil $(0.023 \mathrm{~g}, 60 \%), \delta_{\mathrm{H}}$ $0.05(9 \mathrm{H}, \mathrm{s}), 1.0(2 \mathrm{H}, \mathrm{t}, J 8), 1.45(2 \mathrm{H}, \mathrm{m}), 3.58(1 \mathrm{H}, \mathrm{m}), 3.73(2$ $\mathrm{H}, \mathrm{m}), 3.83(3 \mathrm{H}, \mathrm{s}), 4.37(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and 7$), 4.6(1 \mathrm{H}, \mathrm{d}, J 3)$. $4.83(2 \mathrm{H}, \mathrm{s}), 4.9(1 \mathrm{H}, \mathrm{dd}, J 7$ and 3.3$)$ and $7.03(1 \mathrm{H}, \mathrm{d}, J 3.3)$; $v_{\text {max }} \mathrm{cm}^{-1} 3450$ and 1724; $m /=$ (EI) 414; (CI) 414 (Found: M^{+}. 414.2082. $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{7}$ Si requires $M, 414.2074$); and the ether 24 as an oil $(0.008 \mathrm{~g} .8 \%), \delta_{\mathrm{H}} 0.07(9 \mathrm{H}, \mathrm{s}), 1.0(2 \mathrm{H}, \mathrm{t}, J 8), 1.4(2 \mathrm{H}$, $\mathrm{m}), 1.67(8 \mathrm{H}, \mathrm{m}), 3.75(2 \mathrm{H}, \mathrm{t}, J 8) .3 .84(4 \mathrm{H}, \mathrm{m}), 4.53(1 \mathrm{H}, \mathrm{dd}$, $J 8$ and 6.7), 4.83 ($1 \mathrm{H}, \mathrm{d}, J 3.4$), 4.87 ($1 \mathrm{H}, \mathrm{dd}, J 7$ and 3.4), 4.94 $(2 \mathrm{H}, \mathrm{s})$ and $7.08(1 \mathrm{H}, \mathrm{d}, J 3.4) ; v_{\max } / \mathrm{cm}^{-1} 1725 ; m /=$ (EI) 414 ; (CI) 414 (Found: $\mathrm{M}^{+}, 414.2063 . \mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{Si}$ requires M, 414.2074).

The acetate of compound 23, $\delta_{\mathrm{H}} 0.03(9 \mathrm{H}, \mathrm{s}), 0.92(2 \mathrm{H}, \mathrm{m})$, $2.18(3 \mathrm{H}, \mathrm{s}), 3.56(2 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 4.65(1 \mathrm{H}, \mathrm{dd}, J 9$ and 7), $4.77(3 \mathrm{H}, \mathrm{m}), 4.92(1 \mathrm{H}, \mathrm{t}, J 2), 4.95(1 \mathrm{H}, \mathrm{d}, J 3)$ and $7.07(1$ H, d. $J 3.2$); $v_{\text {max }}^{\prime} \mathrm{cm}^{-1} 1750$ and 1725; and of compound 24, δ_{H} $0.05(9 \mathrm{H}, \mathrm{s}), 2.08(3 \mathrm{H}, \mathrm{s}), 3.6(2 \mathrm{H}, \mathrm{m}), 3.82(3 \mathrm{H}, \mathrm{s}), 3.9(1 \mathrm{H}$, $\mathrm{m}), 4.45(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and 6.5$), 4.76(1 \mathrm{H}, \mathrm{d}, J 7), 4.92(2 \mathrm{H}, \mathrm{m})$, $6.13(1 \mathrm{H}, \mathrm{d} . J 3.4)$ and $7.15(1 \mathrm{H}, \mathrm{d}, J 3.5) ; v_{\max } \mathrm{cm}^{-1} 1750$ and 1730. were prepared.

(3aR,6R,7R,7aS)-Methyl 7-tert-butyldimethylsiloxy-6-hydroxyspiro[3a,6,7,7a-tetrahydro-1,3-benzodioxole-2,1'-cyclohexane]-5-carboxylate 25

A solution of the diol $22(0.1 \mathrm{~g}), \mathrm{Et}_{3} \mathrm{~N}\left(0.16 \mathrm{~cm}^{3}\right)$, TBDMSCl $(0.06 \mathrm{~g})$ and a catalytic amount of 4-(dimethylamino)pyridine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ were set aside for 24 h after which TBDMSCl $(0.03 \mathrm{~g})$ and 4 -(dimethylamino)pyridine were added to it. After a further 2.5 h the mixture was diluted with water $\left(5 \mathrm{~cm}^{3}\right)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$. Work-up gave an oil purified by chromatography on silica gel 60 (EtOAc -light petroleum; $15: 85$) to give the ether $25(0.068 \mathrm{~g}, 50 \%),[\alpha]_{\mathrm{D}}-56.2$ (c. 1.0 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}} 0.15(3 \mathrm{H}, \mathrm{s}), 0.2(3 \mathrm{H}, \mathrm{s}) .0 .98(3 \mathrm{H}, \mathrm{s}), 145(2 \mathrm{H}$, br s), $1.65(8 \mathrm{H}, \mathrm{m}), 3.78(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and 3.5$), 3.84(3 \mathrm{H}, \mathrm{s}), 4.35$ ($1 \mathrm{H}, \mathrm{t} . J 7.5$), $4.57(1 \mathrm{H} . \mathrm{d} . J 3.3) .4 .98(1 \mathrm{H} . \mathrm{dd}, J 7$ and 3.2$)$ and $7.10(1 \mathrm{H}, \mathrm{d}, J 3.2)$; $\delta_{\mathrm{C}}-4.869,-4.396 .18 .118 .23 .699,24.054$. $25.137,25.834,29.700,34.559,37.488 .52 .249,66.480,72.190$, 73.523. 75.587, 110.283, 131.873, 137.929 and 166.006; $\mathrm{v}_{\max } \mathrm{cm}^{1}$ 1730: $m=$ (EI) 398; (CI) 399 (Found: $\mathbf{M}^{+}, 399.2199$. $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{6}$ Si requires $M+\mathrm{H}, 399.2203$).

(5S,6S)-5,6-Dihydroxycyclohexa-1,3-diene-1-carbonitrile 35

An aq. culture ($\approx 5 \mathrm{dm}^{3}$) of Pseudomonas putida UV4, buffered with $\mathrm{KH}_{2} \mathrm{PO}_{4}$ and maintained at a $\mathrm{pH} \approx 7.5$ with 20% aq. KOH was aerated and vigorously stirred at $28^{\circ} \mathrm{C}$. EtOH (20 cm^{3}) was added to the culture followed by $\mathrm{PhCN}(24 \mathrm{~g})$ at a feed rate of $4 \mathrm{~cm}^{3} \mathrm{~h}^{-1}$. During the oxidation a bright pink colour was observed. The appearance of the diene was monitored by UV spectroscopy ($i_{\max } 280 \mathrm{~nm}$). The reaction mixture was centrifuged, decanted from the cells and concentrated under
reduced pressure to $400 \mathrm{~cm}^{3} . \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(400 \mathrm{~g})$ was added to the concentrate which was then filtered through Celite. The filtrate was extracted with EtOAc ($4 \times 200 \mathrm{~cm}^{3}$) and the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure at room temp. to furnish the diene $\mathbf{3 5}$ (contaminated with a small amount of an unknown impurity) as a solid (19.7 g): $\lambda_{\text {max }} / \mathrm{nm} 280 ; \delta_{\mathrm{H}} 4.10$ ($2 \mathrm{H}, \mathrm{br} \mathrm{s}$), 4.45 ($2 \mathrm{H}, \mathrm{brs}$), 6.25 (2 H. m) and $7.80(1 \mathrm{H}, \mathrm{d})$ (Found: C, 60.4; H, 5.5; N, 10.0. $\mathrm{C}_{7} \mathrm{H}_{7}-$ NO_{2} requires $\mathrm{C}, 61.3 ; \mathrm{H}, 5.1 ; \mathrm{N}, 10.2 \%$). The diene was stored as a 10% solution in EtOAc containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$ and precipated from solution with light petroleum cooled to $0^{\circ} \mathrm{C}$ as required.

(3aS,7aS)-2,2-Dimethyl-3a,7a-dihydro-1,3-benzodioxole-4carbonitrile 36

A solution of the nitrile 35 (1.17 g), 2,2-dimethoxypropane (2.1 cm^{3}) and a catalytic amount of camphorsulfonic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(12 \mathrm{~cm}^{3}\right)$ was stirred for 3 h under Ar after which it was treated with $1 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. $\mathrm{NaOH}\left(25 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \times 25 \mathrm{~cm}^{3}\right)$. Work-up gave the acetonide $36(1.4 \mathrm{~g}$, 93%) as a white solid, $\delta_{\mathrm{H}} 1.41(6 \mathrm{H}, \mathrm{s}), 4.7(2 \mathrm{H}, \mathrm{m}), 6.12(1 \mathrm{H}, \mathrm{dd}$, $J 9.7$ and 5.6). $6.23(1 \mathrm{H}, \mathrm{dd}, J 9.7$ and 2.7$)$ and $6.7(1 \mathrm{H}, \mathrm{d}, J$ 5.6); $v_{\text {max }} \mathrm{cm}^{-1}$ 2210; $m /=$ (CI) 195 (Found: M^{+}, 195.1137. $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{2}+\mathrm{NH}_{4}$ requires $M, 195.1133$).

(3a $R, 6 R, 7 S, 7 \mathrm{a} R$)-6,7-Dihydroxy-2,2-dimethyl-3a,6,7,7a-tetra-hydro-1,3-benzodioxole-4-carbonitrile 39

The diene $36(1.4 \mathrm{~g})$ was dissolved in $\mathrm{Bu} \mathrm{OH}\left(25 \mathrm{~cm}^{3}\right)$ containing NMMNO (1.0 g), water $\left(1 \mathrm{~cm}^{3}\right)$ and a catalytic amount of OsO_{4} under dry Ar. The reaction mixture was stirred for 18 h during which time it turned black. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(8 \mathrm{~g})$ and EtOAc $\left(25 \mathrm{~cm}^{3}\right)$ were added to the reaction mixture and stirring continued for a further 1 h . The reaction mixture was then filtered through a pad of Merck 9385 Silica Gel pre-eluted with EtOAc and the pad was washed with several portions of EtOAc. The filtrate was concentrated under reduced pressure to furnish the crude product as an oil. Purification of the oil by chromatography on silica gel 60 (EtOAc-light petroleum; 2:3) furnished starting material (0.5 g) and the diol 39 as a white solid ($0.88 \mathrm{~g}, 53 \%$), mp $114-115^{\circ} \mathrm{C}$ (from EtOAc-light petroleum), $[\alpha]_{\mathrm{D}}-35.4$ (c 1.0 in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \delta_{\mathrm{H}} 1.44(6 \mathrm{H}, \mathrm{s}), 4.38(1 \mathrm{H}, \mathrm{m}), 4.54(2 \mathrm{H}, \mathrm{m}), 4.70(1 \mathrm{H}$, dd, $J 5.2$ and 1.4) and $6.55(1 \mathrm{H}, \mathrm{t}, J 1.7) ; v_{\text {max }} / \mathrm{cm}^{-1} 3405$ and 2230; $m=$ (CI) 229 (Found: C, 56.9; H, 6.4; N, 6.5; M^{+}, 229.1188. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{4}$ requires C, 56.9; H, 6.2; N. $6.6 \%: M+$ $\mathrm{NH}_{4}, 229.1188$).

Acetylation of the product gave a diacetate, $[\alpha]_{\mathrm{D}}-93$ (c 0.5 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\delta_{\mathrm{H}} 1.38(3 \mathrm{H}, \mathrm{s}), 1.42(3 \mathrm{H}, \mathrm{s}), 2.06(3 \mathrm{H}, \mathrm{s}), 2.07(3$ $\mathrm{H}, \mathrm{s}), 4.41(1 \mathrm{H}, \mathrm{t}, J 5.1), 4.67(1 \mathrm{H}, \mathrm{dd}, J 5.1$ and $\sim 1)$, $5.58(1 \mathrm{H}$, $\mathrm{m})$. $5.66(1 \mathrm{H}, \mathrm{m})$ and $6.47(1 \mathrm{H}, \mathrm{m})$; $v_{\text {max }} / \mathrm{cm}^{-1} 2230$ and 1755 ; $m /=(\mathrm{CI}) 313$ (Found: $\mathrm{M}^{+}, 313.1399 . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{6}$ requires $M+\mathrm{NH}_{4}, 313.1400$).

(3aR,5aR,8aS,8bR)-2,2,7,7-Tetramethyl-3a,5a,8a,8b-tetrahydrobenzo[$\left.1,2-d ; 3,4-d^{\prime}\right]$ bis $[1,3]$ dioxole-4-carbonitrile 40

 A solution of the diol $39(0.4 \mathrm{~g}), 2,2$-dimethoxypropane (0.7 cm^{3}) and a catalytic amount of camphorsulfonic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was stirred under Ar for 1 h after which it was diluted with EtOAc-light petroleum ($1: 9 ; 5 \mathrm{~cm}^{3}$) and loaded onto a silica gel 60 H column. Elution with the same solvents gave the acetonide 40 as a white solid $(0.4 \mathrm{~g}, 84 \%), \mathrm{mp} 91-92^{\circ} \mathrm{C}$ (from EtOAc-light petroleum), $[\alpha]_{\mathrm{D}}+52\left(c 1.0\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); δ_{H} $1.37(3 \mathrm{H}, \mathrm{s}), 1.41(3 \mathrm{H}, \mathrm{s}), 1.44(6 \mathrm{H}, \mathrm{s}), 4.63(3 \mathrm{H}, \mathrm{m}), 4.70(1 \mathrm{H}$, m) and $6.48(1 \mathrm{H} . \mathrm{m})$; in $\mathrm{C}_{6} \mathrm{D}_{6} 1.18(6 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{s}), 1.29$ $(3 \mathrm{H}, \mathrm{s}), 4.09(1 \mathrm{H}, \mathrm{m}), 4.21(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 5), 4.3(2 \mathrm{H}, \mathrm{m}), 5.90(1$ $\mathrm{H}, \mathrm{m})$. $6.35(1 \mathrm{H}, \mathrm{s})$ and $6.5(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 26.14,27.61,27.78,69.43$, $69.55,72.17,72.63,110.20,110.71,114.08,116.63$ and 141.20; $v_{\text {max }} / \mathrm{cm}^{-1} 2990$ and $2230 ; m / z(\mathrm{CI}) 252$ and 269 (Found: C, 62.1; H. 6.8: $\mathrm{N}, 5.6: \mathrm{M}^{+}, 269.1492 . \mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires $\mathrm{C}, 62.1 ; \mathrm{H}$. 6.8: $\mathrm{N}, 5.6 \%: M+\mathrm{NH}_{4}, 269.1501$).
($\mathbf{3 a}$ R,5aR,8aS, 8 b))-4,5-Epoxy-2,2,7,7-tetramethyI-3a,5a,8a,8b-tetrahydrobenzo[1,2-d; 3,4-d']bis[1,3]dioxole-4carboxamide 38

30% w/v aq. $\mathrm{H}_{2} \mathrm{O}_{2}\left(0.25 \mathrm{~cm}^{3}\right),\left(\mathrm{Bu}_{4} \mathrm{~N}\right)_{2} \mathrm{SO}_{4}(20 \mathrm{mg})$ and 20% aq. $\mathrm{NaOH}\left(0.2 \mathrm{~cm}^{3}\right)$ were added to a solution of the bis(acetonide) $40(0.1 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.5 \mathrm{~cm}^{3}\right)$ and stirred at $0^{\circ} \mathrm{C}$. After 2.75 h the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \times 5 \mathrm{~cm}^{3}\right)$ and the combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to yield amide 38 as an oil $(0.07 \mathrm{~g}, 67 \%) ; \delta_{\mathrm{H}} 1.37(6 \mathrm{H}, \mathrm{s}) .1 .40(3 \mathrm{H}, \mathrm{s}) .1 .50(3 \mathrm{H}, \mathrm{s}), 3.4$ $\left(1 \mathrm{H}, \mathrm{br}\right.$ s), $4.56(3 \mathrm{H}, \mathrm{m})$ and $5.34(1 \mathrm{H}, \mathrm{d}, J 6.2) ; \delta_{\mathrm{C}} 25.19$, 25.61, 26.42, 27.41, 59.40, 61.97, 69.39, 71.50, 73.96, 109.44, 109.74 and $170.99 ; v_{\text {max }} / \mathrm{cm}^{-1} 3425$ and $1680: m=(\mathrm{CI}) 303$ and 286 (Found: M^{+}, 286.1293. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{6}+\mathrm{H}$ requires M, 286.1291).
(3aR,6R,7R,7aS)-6,7-Dihydroxyspiro[3a,6,7,7a-tetrahydro-1,3-benzodioxole-2,1'-cyclohexane]-5-carbonitrile 43
$\mathrm{Bu}_{4} \mathrm{NF}\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in THF; $13.4 \mathrm{~cm}^{3}$) was added to the bisTBDMS ether $42(2.1 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$. After 3 h the mixture was concentrated under reduced pressure and the residue dissolved in $\mathrm{Et}_{2} \mathrm{O}\left(100 \mathrm{~cm}^{3}\right)$. Work-up and purification by chromatography on silica gel 60 H (EtOAc -light petroleum; gradient elution, $1: 4$ to $4: 1$) gave the diol $\mathbf{4 3}$ as a white solid ($0.95 \mathrm{~g}, 86 \%$), mp $113-114^{\circ} \mathrm{C}$ (from EtOAc-light petroleum), $[\alpha]_{\mathrm{D}}-22\left(c 1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}} 1.40(2 \mathrm{H}, \mathrm{br} \mathrm{s})$, $1.60(8 \mathrm{H}, \mathrm{m})$, $3.90(2 \mathrm{H}, \mathrm{br}$ s), $4.32(1 \mathrm{H}, \mathrm{m}), 4.45(2 \mathrm{H}, \mathrm{m}), 4.71(1 \mathrm{H}, \mathrm{t}, J 4)$ and $6.61\left(1 \mathrm{H}\right.$, br d, $J 1.7$); $v_{\text {max }} \mathrm{cm}^{-1} 3425$ and $2225 ; m / z$ (EI) 251; (CI) 269 (Found: C. 62.0; H, 6.8; N, 5.6: M ${ }^{+}$. 251.1154. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires C, 62.1; H. 6.8; N. 5.6\%: M, 251.1157).

(5S,6S)-5,6-Di-tert-butyldimethylsiloxycyclohexa-1,3-diene-1carbonitrile 37

TBDMSOSO ${ }_{2} \mathrm{CF}_{3}\left(10.7 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred solution of the diene $35(2.5 \mathrm{~g})$ and imidazole (5 g) in $\mathrm{Me}_{2} \mathrm{NCHO}\left(25 \mathrm{~cm}^{3}\right)$ under Ar. After 3 h the reaction mixture was poured into water ($120 \mathrm{~cm}^{3}$) and extracted with $\mathrm{Et}_{2} \mathrm{O}$ $\left(3 \times 100 \mathrm{~cm}^{3}\right)$. Work-up and purification by dry column chromatography on silica gel 60 H (EtOAc-light petroleum; gradient elution, 0:1 to 8:92) gave the ether 37 as a white solid $(5.6 \mathrm{~g}, 85 \%)$. $\lambda_{\text {max }} 286 \mathrm{~nm} ; \delta_{\mathrm{H}} 0.13(3 \mathrm{H}, \mathrm{s}), 0.15(3 \mathrm{H}, \mathrm{s}), 0.16(3$ $\mathrm{H}, \mathrm{s}), 0.21(3 \mathrm{H}, \mathrm{s}), 0.95(18 \mathrm{H}, \mathrm{s}), 4.16(1 \mathrm{H}, \mathrm{d}, J 5), 4.31(1 \mathrm{H}$, $\mathrm{m}), 6.07$ (1 H , ddd, $J 9.5,5.3$ and 1.8), $6.25(1 \mathrm{H} . \mathrm{dd}, J 9.5$ and 3.2) and 6.73 ($1 \mathrm{H}, \mathrm{d}, J 5.3$); $v_{\text {max }} / \mathrm{cm}^{-1} 2215 ; m_{z}=$ (EI) 365 ; (CI) 366 and 383 (Found: $\mathrm{M}^{+}, 365.2204 . \mathrm{C}_{19} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{Si}_{2}$ requires $M, 365.2206)$.

($3 R, 4 S, 5 R, 6 R$)-5,6-Di-tert-butyldimethylsiloxy-3,4-dihydroxy-cyclohex-1-ene-1-carbonitrile 41

OsO_{4} (4% aq. solution; 4 drops) was added to the diene 37 (4.4 g) dissolved in $\mathrm{Bu}^{t} \mathrm{OH}\left(60 \mathrm{~cm}^{3}\right)$ containing NMMNO (1.52 g) and water ($2 \mathrm{~cm}^{3}$) under Ar. The reaction mixture was stirred for 18 h after which it was treated with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(15 \mathrm{~g})$ and EtOAc ($60 \mathrm{~cm}^{3}$) and stirred for a further 1 h . The reaction mixture was then filtered through a pad of Merck 9385 Silica Gel pre-eluted with EtOAc and the pad was washed with several portions of EtOAc. The filtrate was concentrated under reduced pressure to furnish the crude product as an oil, purification of which by chromatography on silica gel 60 (EtOAc-light petroleum; 1:4) gave the diol 41 ($4.1 \mathrm{~g}, 85 \%$), mp $165-166^{\circ} \mathrm{C}$ (from EtOAc-light petroleum), $[\alpha]_{\mathrm{D}}-108.4$ (c 1.0 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): $\delta_{\mathrm{H}} 0.14(3 \mathrm{H}, \mathrm{s}), 0.16(3 \mathrm{H}, \mathrm{s}), 0.18(3 \mathrm{H}, \mathrm{s}), 0.25(3$ $\mathrm{H}, \mathrm{s}), 0.92(9 \mathrm{H}, \mathrm{s}), 0.98(9 \mathrm{H}, \mathrm{s}), 1.75(2 \mathrm{H}, \mathrm{br}$ s). $4.13(2 \mathrm{H}, \mathrm{m})$, $4.52(2 \mathrm{H}, \mathrm{br} \mathrm{s})$ and $6.5(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 1.8)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3430$ and 2240; $m /=$ (EI) 399 ; (CI) 400 and 417 (Found: C. $57.0 ; \mathrm{H}, 9.5 ; \mathrm{N}$, 3.6; $\mathrm{M}^{+}, 400.2338 . \mathrm{C}_{19} \mathrm{H}_{3} 7 \mathrm{NO}_{4} \mathrm{Si}_{2}$ requires C, 57.1; $\mathrm{H}, 9.3 ; \mathrm{N}$, $3.5 \% ; M+\mathrm{H}, 400.2339)$ and the enone $53(0.12 \mathrm{~g} .3 \%) ; \delta_{\mathrm{H}} 0.16$ ($3 \mathrm{H}, \mathrm{s}$) , $0.17(3 \mathrm{H}, \mathrm{s}), 0.25(3 \mathrm{H}, \mathrm{s}), 0.27(3 \mathrm{H}, \mathrm{s}), 0.95(18 \mathrm{H}, \mathrm{s})$,
3.19 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$), $3.9(1 \mathrm{H}, \mathrm{d}, J 8), 4.53(1 \mathrm{H}, \mathrm{s}), 4.58(1 \mathrm{H}, \mathrm{d}, J 8)$ and $6.6(1 \mathrm{H}, \mathrm{s}) ; v_{\text {max }} / \mathrm{cm}^{-1} 2895$ and $1695 ; m / z(\mathrm{EI}) 398 ;(\mathrm{CI}) 398$ (Found: $\mathrm{M}^{+}, 397.1404 . \mathrm{C}_{19} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{Si}_{2}$ requires $M, 397.1400$); and the $\operatorname{diol} 50(0.07 \mathrm{~g}, 2 \%) ; \delta_{\mathrm{H}} 0.16(3 \mathrm{H}, \mathrm{s}), 0.17(3 \mathrm{H}, \mathrm{s}), 0.18(3$ $\mathrm{H}, \mathrm{s}), 0.24(3 \mathrm{H}, \mathrm{s}), 0.94(9 \mathrm{H}, \mathrm{s}), 0.97(9 \mathrm{H}, \mathrm{s}), 2.5(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.74$ ($1 \mathrm{H}, \mathrm{s}$), $4.36(1 \mathrm{H}, \mathrm{m}), 4.61(1 \mathrm{H}, \mathrm{m}), 4.70(1 \mathrm{H}, \mathrm{m}), 5.54(1 \mathrm{H}, \mathrm{dt}$. $J 10.5$ and 2.4$)$ and $5.68(1 \mathrm{H}$, br d, $J 10.5) ; v_{\max } / \mathrm{cm}^{-1} 3380$ and $2260 ; \mathrm{m} / \mathrm{z}$ (EI) 399; (CI) 400 (Found: M^{+}, 400.2332. $\mathrm{C}_{19} \mathrm{H}_{3}{ }_{7} \mathrm{NO}_{4} \mathrm{Si}_{2}$ requires $\mathrm{M}+\mathrm{H}, 400.2339$).

(3aR,6R,7R,7aS)-6,7-Bis(di-tert-butyldimethylsiloxy)spiro-[3a,6,7,7a-tetrahydro-1,3-benzodioxole-2,1'-cyclohexane]-5carbonitrile 42

A solution of 1,1-diethoxycyclohexane (1.25 g), the diol 41 (2 g), and a catalytic amount of camphorsulfonic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($20 \mathrm{~cm}^{3}$) was stirred under Ar for 3 h after which it was treated with saturated aq. $\mathrm{NaHCO}_{3}\left(2 \times 20 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($30 \mathrm{~cm}^{3}$). Work-up gave an oil purified by chromatography on silica gel 60 (EtOAc -light petroleum; 4 :96) to give the acetal 42 as a white solid $(2.15 \mathrm{~g}, 90 \%), \operatorname{mp} 83-86^{\circ} \mathrm{C}$ (from EtOAc-light petroleum), $[\alpha]_{\mathrm{D}}-59\left(c 1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}}$ $0.15(6 \mathrm{H}, \mathrm{s}), 0.19(3 \mathrm{H}, \mathrm{s}), 0.22(3 \mathrm{H}, \mathrm{s}), 0.91(9 \mathrm{H}, \mathrm{s}), 0.98(9 \mathrm{H}$, s), $1.45(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.60(8 \mathrm{H}, \mathrm{m}), 4.02(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.32(1 \mathrm{H}, \mathrm{t}, J$ 5.9), $4.38(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.76(1 \mathrm{H}, \mathrm{m})$ and $6.59(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 3)$; $v_{\max } / \mathrm{cm}^{-1} 2935$ and 2225; $m / z(\mathrm{CI}) 497$ (Found: C, 62.5; H, 9.8; $\mathrm{N}, 2.9 ; \mathrm{M}^{+}, 497.3224 . \mathrm{C}_{25} \mathrm{H}_{45} \mathrm{NO}_{4} \mathrm{Si}_{2}$ requires $\mathrm{C}, 62.6 ; \mathrm{H}, 9.5$; $\mathrm{N}, 2.9 \% ; M+\mathrm{NH}_{4}, 497.3231$).

(3aR,6R,7R,7aS)-6-tert-Butyldimethylsiloxy-7-hydroxyspiro-[3a,6,7,7a-tetrahydro-1,3-benzodioxole-2,1'-cycIohexane]-5carbonitrile 45

A solution of the diol $43(0.34 \mathrm{~g}), \mathrm{Bu}_{2} \mathrm{SnO}(0.3 \mathrm{~g})$ and $\mathrm{PhMe}(10$ cm^{3}) were heated under reflux with azeotropic removal of water for 8 h after which the solvent was removed under reduced pressure. CsF (0.185 g) was added to the residue and the crude product, a solid, was kept under reduced pressure for a further 1 h . The solids were suspended in $\mathrm{Me}_{2} \mathrm{NCHO}\left(5 \mathrm{~cm}^{3}\right)$ and TBDMSCl $\left(0.225 \mathrm{~cm}^{3}\right)$ was added to the stirred solution blanketed with Ar. After 18 h the mixture was diluted with water ($25 \mathrm{~cm}^{3}$) and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 25 \mathrm{~cm}^{3}\right)$. Work-up and purification by chromatography on silica gel 60 ($\mathrm{EtOAc}-$ light petroleum; 1:9) gave the ether 45 as an oil ($0.14 \mathrm{~g}, 28 \%$); $\delta_{\mathrm{H}} 0.24(3 \mathrm{H}, \mathrm{s}), 0.30(3 \mathrm{H}, \mathrm{s}), 1.0(9 \mathrm{H}, \mathrm{s}), 2.61(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.26$ $(1 \mathrm{H}, \mathrm{t}, J 4), 4.43(1 \mathrm{H}, \mathrm{m}), 4.51(1 \mathrm{H}, \mathrm{t}, J 4.5), 4.70(1 \mathrm{H}, \mathrm{m})$ and $6.54(1 \mathrm{H}, \mathrm{m})$; in $\mathrm{C}_{6} \mathrm{D}_{6} 0.05(3 \mathrm{H}, \mathrm{m}), 0.26(3 \mathrm{H}, \mathrm{s}), 0.96(9 \mathrm{H}, \mathrm{s})$. $1.25(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.5(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.17(1 \mathrm{H}, \mathrm{t}, J 3.9), 4.37(1 \mathrm{H}, \mathrm{m})$, $4.40(1 \mathrm{H}, \mathrm{t}, J 4.5), 4.49(1 \mathrm{H}, \mathrm{m})$ and $6.1(1 \mathrm{H}, \mathrm{m}) ; v_{\max } / \mathrm{cm}^{-1}$ 3485 and 2225; m / z (EI) 365; (CI) 383 and 366 (Found: M^{+}, 365.2015. $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{4}$ Si requires $M, 365.2022$).

Acetylation of the product furnished an acetate, $\delta_{\mathrm{H}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ $0.13(3 \mathrm{H}, \mathrm{s}), 0.25(3 \mathrm{H}, \mathrm{s}), 1.02(9 \mathrm{H}, \mathrm{s}), 1.78(3 \mathrm{H}, \mathrm{s}), 4.19(1 \mathrm{H}$, dd, $J 5.5$ and 3.7), 4.32 ($1 \mathrm{H}, \mathrm{t}, J 6.2$), 4.54 ($1 \mathrm{H}, \mathrm{d}, J 3.3$), 5.45 (1 $\mathrm{H}, \mathrm{dd}, J 6.7$ and 3.3) and $6.11(1 \mathrm{H}, \mathrm{d}, J 3.7) ; v_{\max } / \mathrm{cm}^{-1} 2225$ and 1750; $m /=$ (EI) 407 and 408; (CI) 408 and 425 (Found: M^{+}, 407.2127. $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{Si}$ requires $M, 407.2128$).
(3a $R, 6 R, 7 R, 7 a S$)-6-Benzyloxy-7-hydroxyspiro[3a,6,7,7a-tetra-hydro-1,3-benzodioxole-2,1'-cyclohexane]-5-carbonitrile 46 A solution of the diol $43(0.1 \mathrm{~g})$ and $\mathrm{Bu}_{2} \mathrm{SnO}(0.11 \mathrm{~g})$ in $\mathrm{PhMe}(2$ cm^{3}) was heated under reflux for 1.5 h in the presence of ground $3 \AA$ molecular sieve (0.2 g). After concentration under reduced pressure, the mixture was treated with CsF (0.066 g) and kept under reduced pressure for a further 30 min . It was then suspended in $\mathrm{Me}_{2} \mathrm{NCHO}\left(2 \mathrm{~cm}^{3}\right)$ and treated with $\mathrm{PhCH}_{2} \mathrm{Br}$ $\left(0.052 \mathrm{~cm}^{3}\right)$. After being stirred for 18 h the mixture was diluted with water $\left(10 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(3 \times 10 \mathrm{~cm}^{3}\right)$. Work-up and purification by chromatography on silica gel 60 (EtOAc-light petroleum; 15:85) gave the ether 46 as an oil
$(0.052 \mathrm{~g}, 38 \%) ; \delta_{\mathrm{H}} 4.25(1 \mathrm{H}, \mathrm{m}), 4.38(1 \mathrm{H}, \mathrm{dd}, J 4.9$ and 3.5$), 4.5$ (1 H, t, J4.9), $4.72(1 \mathrm{H}, \mathrm{m}), 4.77(1 \mathrm{H}, \mathrm{d}, J 11.3), 4.91(1 \mathrm{H}, \mathrm{d}, J$ 11.3), $6.6(1 \mathrm{H}, \mathrm{m})$ and $7.42(5 \mathrm{H}, \mathrm{m})$; $v_{\max } / \mathrm{cm}^{-1} 2930$ and 2225 ; m / z (EI) 341; (CI) 359 and 342 (Found: M^{+}, 341.1628. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4}$ requires $M, 341.1625$).

An acetate of the product was prepared; $\delta_{\mathrm{H}} 1.42(2 \mathrm{H}, \mathrm{br} \mathrm{s})$, $2.11(3 \mathrm{H}, \mathrm{s}), 4.33(1 \mathrm{H}, \mathrm{m}), 4.50(1 \mathrm{H}, \mathrm{t}, J 6), 4.75(3 \mathrm{H}, \mathrm{m}), 5.51$ ($1 \mathrm{H}, \mathrm{dd}, J 6.2$ and 3.4) and $6.67(1 \mathrm{H}$, br d,$J 3.2) ; v_{\text {max }} / \mathrm{cm}^{-1}$ 2940, 2225 and $1750 ; m / z$ (EI) 383; (CI) 384 and 401 (Found: $\mathrm{M}^{+}, 383.1742 . \mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5}$ requires $M, 383.1731$).

(3aR,6R,7R,7aS)-6,7-Bis(di-tert-butyldimethylsiloxy)-spiro[3a,6,7,7a-tetrahydro-1,3-benzodioxole-2,1'-cyclohexane]-

 5-carbaldehyde 27DIBAL ($1 \mathrm{~mol} \mathrm{dm}{ }^{3}$ in hexane, $5.2 \mathrm{~cm}^{3}$) was added dropwise to a cold $\left(-78^{\circ} \mathrm{C}\right)$ stirred solution of the bis-TBDMS ether 53 $(2.0 \mathrm{~g})$ in hexane $\left(40 \mathrm{~cm}^{3}\right)$ and, after 40 min , the mixture was diluted with EtOAc ($20 \mathrm{~cm}^{3}$) and treated with 60% aq. tartaric acid $\left(10 \mathrm{~cm}^{3}\right)$. The reaction mixture was warmed to room temp. after which it was treated with a further portion of aq. tartaric acid ($25 \mathrm{~cm}^{3}$) and extracted with EtOAc ($50 \mathrm{~cm}^{3}$). Work-up and purification by chromatography on silica gel 60 (EtOAc-light petroleum; 2:98) gave the aldehyde 27 as a white solid (1.4 g , 70%), mp $96-97^{\circ} \mathrm{C}$ (from EtOAc-light petroleum); $\delta_{\mathrm{H}} 0.03$ (3 $\mathrm{H}, \mathrm{s}), 0.13(3 \mathrm{H}, \mathrm{s}), 0.16(3 \mathrm{H}, \mathrm{s}), 0.18(3 \mathrm{H}, \mathrm{s}), 0.84(9 \mathrm{H}, \mathrm{s}), 0.96$ $(9 \mathrm{H}, \mathrm{s}), 3.5(3 \mathrm{H}, \mathrm{dd}, J 7.4$ and 2.3$), 4.5(1 \mathrm{H}, \mathrm{t}, J 7.6), 4.58(1 \mathrm{H}$, $\mathrm{d}, J 2.0), 5.13(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and 2.4$), 6.76(1 \mathrm{H}, \mathrm{d}, J 2.0)$ and $9.55(1 \mathrm{H}, \mathrm{s}) ; v_{\max } / \mathrm{cm}^{-1} 2935$ and $1695 ; \mathrm{m} / \mathrm{z}$ (EI) 482 ; (CI) 483 (Found: C, 62.2; H, 9.5; $\mathrm{M}^{+}, 483.2951 . \mathrm{C}_{25} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{Si}_{2}$ requires C, $62.2 ; \mathrm{H}, 9.6 \% ; M+\mathrm{H}, 483.2962$).
(3aR,6R,7R,7aS)-Methyl 6,7-bis(di-tert-butyldimethylsiloxy)-spiro[3a,6,7,7a-tetrahydro-1,3-benzodioxole-2,1'-cyclohexane]-5-carboxylate 29
2-Methylbut-2-ene $\left(6.5 \mathrm{~cm}^{3}\right)$ was added to a suspension of the aldehyde $27(1.3 \mathrm{~g})$ in $\mathrm{Bu}^{t} \mathrm{OH}\left(39 \mathrm{~cm}^{3}\right)$ followed by an aqueous solution ($26 \mathrm{~cm}^{3}$) containing $\mathrm{NaClO}_{2}(3.12 \mathrm{~g})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ $(4.16 \mathrm{~g})$. After 1 h the reaction mixture was concentrated under reduced pressure, treated with $2 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(30 \mathrm{~cm}^{3}\right)$ and extracted with EtOAc ($3 \times 30 \mathrm{~cm}^{3}$). Work-up gave compound $28(1.3 \mathrm{~g})$ which was dissolved in $\mathrm{Me}_{2} \mathrm{CO}\left(10 \mathrm{~cm}^{3}\right)$ and treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(0.86 \mathrm{~g})$ and MeI $\left(3 \mathrm{~cm}^{3}\right)$ After 2 h the reaction mixture was filtered, concentrated under reduced pressure and purified by chromatography on silica gel 60 (EtOAc-light petroleum; 2:98) to give the ester 29 as an oil ($1.1 \mathrm{~g}, 80 \%$), $[\alpha]_{\mathrm{D}}$ $-10.5\left(c 1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}} 0.02(3 \mathrm{H}, \mathrm{s}), 0.14(3 \mathrm{H}, \mathrm{s}), 0.17$ $(6 \mathrm{H}, \mathrm{s}), 0.86(9 \mathrm{H}, \mathrm{s}), 0.97(9 \mathrm{H}, \mathrm{s}), 3.57(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and 2.4$)$, $3.81(3 \mathrm{H}, \mathrm{s}), 4.43(1 \mathrm{H}, \mathrm{t}, J 7.6), 4.60(1 \mathrm{H}, \mathrm{d}, J 2.4), 5.00(1 \mathrm{H}$, dd, $J 7.6$ and 2.4) and $6.96(1 \mathrm{H}, \mathrm{d}, J 2.4) ; v_{\max } / \mathrm{cm}^{-1} 1725 ; m / z$ (CI) 513 (Found: $\mathrm{M}^{+}, 513.3076 . \mathrm{C}_{20} \mathrm{H}_{48} \mathrm{O}_{6} \mathrm{Si}_{2}$ requires $M+\mathrm{H}$, 513.3068).

(5S,6S)-Methyl 5,6-dihydroxycyclohexa-1,3-diene-1-carboxylate 47

An aq. culture ($\approx 4 \mathrm{dm}^{3}$) of Pseudomonas putida UV4, buffered with $\mathrm{KH}_{2} \mathrm{PO}_{4}$ and maintained at $\mathrm{pH} \approx 7.5$ with 20% aq. KOH was aerated and vigorously stirred at $28^{\circ} \mathrm{C}$ whilst EtOH (20 cm^{3}) was added followed by $\mathrm{PhCO}_{2} \mathrm{Me}(17 \mathrm{~g})$ at a feed rate of $2 \mathrm{~cm}^{3} \mathrm{~h}^{-1}$ for the first h and then at $4 \mathrm{~cm}^{3} \mathrm{~h}^{-1}$. During the oxidation a bright orange colour was observed. The appearance of the diene was monitored by UV spectroscopy ($i_{\max } 290 \mathrm{~nm}$). The reaction mixture was centrifuged, decanted from the cells and concentrated under reduced pressure to $400 \mathrm{~cm}^{3}$. $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(400 \mathrm{~g})$ was added to the reaction mixture which was then filtered through Celite. The filtrate was extracted with EtOAc ($4 \times 200 \mathrm{~cm}^{3}$) and the combined extracts were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated under reduced pressure at room temp. to furnish the diene 47 as an oil $(9 \mathrm{~g})$, contaminated with a
small amount of an unknown compound; $[\alpha]_{\mathrm{D}}+58.7$ (c 1.0 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $\lambda_{\text {max }} / \mathrm{nm} 282(\varepsilon 9300) ; \delta_{\mathrm{H}} 3.0(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s})$, $4.52(1 \mathrm{H}, \mathrm{dt}, J 6.4$ and 2.2$), 4.62(1 \mathrm{H}, \mathrm{d}, J 6.4), 6.13(1 \mathrm{H}, \mathrm{ddd}, J$ 9.6, 5.5 and 2.2), $6.25(1 \mathrm{H}, \mathrm{dm}, J 9.6)$ and $7.10(1 \mathrm{H}, \mathrm{d}, J 5.5)$; δ_{C} $52.135,65.009,69.150,122.691,128.382,134.177,138.477$ and 162.479; $v_{\text {max }} / \mathrm{cm}^{-1} 3400$ and $1703 ; m / z(\mathrm{Cl}) 170$ and 188 (Found: M^{+}. 188.0917. $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $M+\mathrm{NH}_{4}$, 188.0923). The compound was stored as a 10% solution in EtOAc containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$.

($3 R, 4 S, 5 R, 6 R$)-3,4,5,6-Tetrahydroxycyclohex-1-ene-1-carboxylic acid

A solution of methyl 6β-hydroxyshikimate $18(0.09 \mathrm{~g})$ in a mixture of water ($2 \mathrm{~cm}^{3}$) and $10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(2 \mathrm{~cm}^{3}\right)$ was heated at $60^{\circ} \mathrm{C}$ for 4 h and then concentrated under high vacuum to give an oil. Purification of this by reverse phase HPLC using a Dynamax $60 \AA$ HPLC column ($t_{\mathrm{R}} 4.75 \mathrm{~min}$) with aq. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(99.9: 0.1)$ as eluent gave the acid as an oil (0.05 $\mathrm{g}, 60 \%)$. $[x]_{\mathrm{D}}-140\left(c 1.0\right.$ in water); $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 3.82(1 \mathrm{H}, \mathrm{dd}, J$ 10.5 and 4), 3.89 (1 H, dd, $J 10.5$ and 4), 4.41 ($1 \mathrm{H}, \mathrm{t}, J 4.5$), 4.60 ($1 \mathrm{H}, \mathrm{d} . J 4$) and 6.91 (1 H, d. $J 5$); $\delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}\right) 66.458,66.514$, 68.729, 69.228, 133.128, 140.697 and $169.991 ; m / z(\mathrm{CI}) 208$ and 191.

(5S,6S)-Methyl 5,6-di-tert-butyldimethylsiloxycyclohexa-1,3-diene-1-carboxylate 49

TBDMSOSO ${ }_{2} \mathrm{CF}_{3}\left(3 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred solution of the diene $47(0.9 \mathrm{~g})$ and imidazole (1.44 g) in $\mathrm{Me}_{2} \mathrm{NCHO}\left(5 \mathrm{~cm}^{3}\right)$ under Ar. After 1.25 h the reaction mixture was poured into water ($25 \mathrm{~cm}^{3}$) and extracted with $\mathrm{Et}_{2} \mathrm{O}$ $\left(3 \times 25 \mathrm{~cm}^{3}\right)$. Work-up and purification by dry column chromatography on silica gel 60 H (EtOAc-light petroleum; 3:97) gave the oily ether $\mathbf{4 9}(1.3 \mathrm{~g}, 62 \%) ; \delta_{\mathrm{H}} 0.06(3 \mathrm{H}, \mathrm{s}), 0.13(3$ $\mathrm{H}, \mathrm{s}), 0.16(3 \mathrm{H}, \mathrm{s}), 0.15(3 \mathrm{H}, \mathrm{s}), 0.98(9 \mathrm{H}, \mathrm{s}), 1.03(9 \mathrm{H}, \mathrm{s}), 3.82$ $(3 \mathrm{H}, \mathrm{s}) .4 .45(2 \mathrm{H}, \mathrm{m}), 6.07(1 \mathrm{H}, \mathrm{ddd}, J 9.5$ and 2.5$), 6.17(1 \mathrm{H}$, $\mathrm{dm} . J 9$) and $7.05(1 \mathrm{H}, \mathrm{m}) ; v_{\text {max }} / \mathrm{cm}^{-1} 2955$ and $1720 ; m_{l}=(\mathrm{EI})$ 398: (CI) 399 (Found: $\mathrm{M}^{+}, 398.2306 . \mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{Si}_{2}$ requires M. $398.2308)$.

($3 R, 4 S, 5 R, 6 R$)-Methyl 5,6-di-tert-butyldimethylsiloxy-3,4-dihydroxycyclohex-1-ene-1-carboxylate 51

$\mathrm{OsO}_{4}(4 \%$ aq. solution; 2 drops) was added to the diene 49 (0.13 g) dissolved in $\mathrm{Bu}^{i} \mathrm{OH}\left(3 \mathrm{~cm}^{3}\right)$ containing NMMNO $(0.03 \mathrm{~g})$ and water (4 drops) under Ar. The reaction mixture was stirred for 18 h during which time it turned black. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(0.5 \mathrm{~g})$ and $\mathrm{EtOAc}\left(5 \mathrm{~cm}^{3}\right)$ were added to the reaction mixture which was then stirred for a further 1 h . After this, the reaction mixture was filtered through a pad of Merck 9385 Silica Gel pre-eluted with EtOAc and the pad was washed with several portions of EtOAc. The combined filtrate and washings were concentrated under reduced pressure to furnish the crude product as an oil, purification of which by chromatography on silica gel 60 (EtOAc-light petroleum; 15:85) furnished an inseparable mixture [0.069 $\mathrm{g} ; 10: 1: m /=(\mathrm{EI}) 433 ;(\mathrm{Cl}) 433]$ of the diols $51 ; \delta_{\mathrm{H}}$ $0.06(3 \mathrm{H}, \mathrm{s}) .0 .13(3 \mathrm{H}, \mathrm{s}), 0.16(3 \mathrm{H}, \mathrm{s}), 0.17(3 \mathrm{H}, \mathrm{s}), 0.84(9 \mathrm{H}$, s). 0.98 ($9 \mathrm{H} . \mathrm{s}$). $3.85(3 \mathrm{H}, \mathrm{s}), 4.38(1 \mathrm{H}, \mathrm{m}) .4 .78(1 \mathrm{H}, \mathrm{m}), 4.95(1$ H. m) and $5.60(2 \mathrm{H}, \mathrm{m})$; and $\mathbf{3 0}, \delta_{\mathrm{H}} 0.05(3 \mathrm{H}, \mathrm{s}), 0.13(3 \mathrm{H}, \mathrm{s})$, $0.16(3 \mathrm{H} . \mathrm{s}) .0 .87(9 \mathrm{H}, \mathrm{s}), 0.99(9 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.9(1 \mathrm{H}$, m). 4.25 ($1 \mathrm{H} . \mathrm{dd}, J 10$ and 5), $4.60(1 \mathrm{H}, \mathrm{t}, J 5), 4.74(1 \mathrm{H}, \mathrm{d}, J 5)$ and $6.92(1 \mathrm{H} . \mathrm{d} . J 4.5)$.

Methyl ($3 \mathrm{aR}, 6 R, 7 S, 7 \mathrm{a} R$)-6,7-dihydroxy-2,2-dimethyl-3a,6,7,7a-tetrahydro-1,3-benzodioxole-4-carboxylate 16
A solution of the diol 47 (0.5 g), 2,2-dimethoxypropane (1.1 cm^{3}) and a catalytic amount of camphorsulfonic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was stirred under Ar for 1 h after which the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ and $1 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{NaOH}\left(10 \mathrm{~cm}^{3}\right)$. The aq. phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
($3 \times 15 \mathrm{~cm}^{3}$) and the combined extracts were dried and concentrated to furnish the acetonide 48 as an oil ($0.48 \mathrm{~g}, 78 \%$); $\delta_{\mathrm{H}} 1.42(3 \mathrm{H}, \mathrm{s}), 1.48(3 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}), 4.90(1 \mathrm{H}, \mathrm{dd}, J 8.4$ and 1.8), $4.95(1 \mathrm{H}, \mathrm{d}, J 8.4), 6.15(2 \mathrm{H}, \mathrm{m})$ and $7.15(1 \mathrm{H}, \mathrm{m})$; $v_{\text {max }} / \mathrm{cm}^{-1} 1720 ; m / z(\mathrm{CI}) 212$. The acetonide $48(0.45 \mathrm{~g})$ was hydroxylated by the method described previously and the products were separated by chromatography on silica gel 60 (EtOAc-light petroleum; 4:6 then 6:4) to give the diol 52 (0.092 g, 18%), mp $98-100^{\circ} \mathrm{C}$ (from EtOAc-light petroleum), $[\alpha]_{\mathrm{D}}$ $+134\left(c 1.0 \mathrm{in}_{\mathrm{CH}}^{2} \mathrm{Cl}_{2}\right) ; \delta_{\mathrm{H}} 1.30(3 \mathrm{H}, \mathrm{s}), 1.34(3 \mathrm{H}, \mathrm{s}), 3.87(3 \mathrm{H}$, s), $4.31(1 \mathrm{H}, \mathrm{d}, J 5), 4.65(1 \mathrm{H}, \mathrm{m}), 4.76(1 \mathrm{H}, \mathrm{br}$ s), $5.64(1 \mathrm{H}$, br d, $J 11$) and $5.70(1 \mathrm{H}, \mathrm{brd}, J 11)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3430$ and 1735 ; $m / z(\mathrm{CI}) 262$ and 245 (Found: C, 54.0; H, 6.7; M^{+}, 262.1291. $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{6}$ requires C, $54.1 ; \mathrm{H}, 6.6 \% ; M+\mathrm{NH}_{4}, 262.1291$) and the diol $16(0.14 \mathrm{~g}, 27 \%), \mathrm{mp} 143-145^{\circ} \mathrm{C}$ (from EtOAclight petroleum), $[x]_{\mathrm{D}}-41.0\left(c 1.0\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\delta_{\mathrm{H}} 1.39(3 \mathrm{H}, \mathrm{s})$, $1.44(3 \mathrm{H}, \mathrm{s}), 2.9(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}), 4.27(1 \mathrm{H}, \mathrm{t} . J 3.6), 4.53$ ($1 \mathrm{H}, \mathrm{t}, J 4.8$), $4.55(1 \mathrm{H}, \mathrm{br}$ s), $5.07(1 \mathrm{H}, \mathrm{d}, J 5.7)$ and $6.9(1 \mathrm{H}$, $\mathrm{m}) ; \delta_{\mathrm{c}} 25.751,27.556,52.351,66.033,70.086 .70 .488,75.179$, 109.571, 130.016, 140.382 and 166.184; $v_{\text {max }} \mathrm{cm}^{-1} 3450$ and 1705; m / z (CI) 262 and 245 (Found: C, $54.0 ; \mathrm{H}, 6.8 ; \mathrm{M}^{+}$, 262.1295. $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{6}$ requires $\mathrm{C}, 54.1 ; \mathrm{H}, 6.6 \% ; M+\mathrm{NH}_{4}$, 262.129).

Prévost reaction on (5S,6S)-methyl 5,6-di-tert-butyldimethyI-siloxycyclohexa-1,3-diene-1-carboxylate

A mixture of $\mathrm{AgOAc}(0.125 \mathrm{~g})$ and $\mathrm{I}_{2}(0.1 \mathrm{~g})$ in $\mathrm{AcOH}\left(6 \mathrm{~cm}^{3}\right)$ was stirred at room temp. until all the I_{2} had been consumed. The diene $49(0.15 \mathrm{~g})$ in $\mathrm{AcOH}\left(2 \mathrm{~cm}^{3}\right)$ was added to the reaction mixture after which it was stirred at $70^{\circ} \mathrm{C}$ for 2 h and then treated with $\mathrm{AcOH}\left(0.5 \mathrm{~cm}^{3}\right)$ and water $\left(0.0067 \mathrm{~cm}^{3}\right)$. After the reaction mixture had been heated for a further 9 h , the yellow precipitate was filtered off and washed with CHCl_{3}. The combined filtrate and washings were concentrated under reduced pressure and the product was purified by chromatography on silica gel 60 (EtOAc-light petroleum; gradient elution, $3: 97$ to $20: 80$) to give a mixture (0.03 g) (Found: $\mathrm{M}^{+} .475 .2547$. $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{Si}_{2}$ requires $M+\mathrm{H}, 475.2547$) of the acetate $32, \delta_{\mathrm{H}}$ $0.14(3 \mathrm{H}, \mathrm{s}), 0.16(3 \mathrm{H}, \mathrm{s}), 0.19(6 \mathrm{H}, \mathrm{s}), 0.88(9 \mathrm{H} . \mathrm{s}), 0.95(9 \mathrm{H}$, s). $2.20(3 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}), 4.05(1 \mathrm{H}, \mathrm{dd}, J 10$ and 3$), 4.70(2$ $\mathrm{H}, \mathrm{m}), 5.45(1 \mathrm{H}, \mathrm{dd}, J 10$ and 3$)$ and $6.84(1 \mathrm{H}, \mathrm{d} . J 3)$; and the acetate $34, \delta_{\mathrm{H}} 0.05(3 \mathrm{H}, \mathrm{s}), 0.19(9 \mathrm{H}, \mathrm{s}), 0.88(9 \mathrm{H}, \mathrm{s}), 1.0(9 \mathrm{H}$, s), $2.14(3 \mathrm{H}, \mathrm{s}), 3.85(3 \mathrm{H}, \mathrm{s}), 3.95(1 \mathrm{H}, \mathrm{dd}, J 10$ and 3$) .4 .35(1$ $\mathrm{H}, \mathrm{dd}, J 10$ and 3), $4.70(1 \mathrm{H}, \mathrm{d}, J 3), 5.70(1 \mathrm{H}, \mathrm{t}, J 4)$ and $6.69(1$ $\mathrm{H}, \mathrm{d}, J 3)$: and the acetate $54(0.06 \mathrm{~g}), \delta_{\mathrm{H}}\left(-60^{\circ} \mathrm{C}\right)$ (conformer a) $0.1(9 \mathrm{H}, \mathrm{s}), 0.15(3 \mathrm{H}, \mathrm{s}), 0.75(9 \mathrm{H}, \mathrm{s}), 0.90(9 \mathrm{H}, \mathrm{s}) .2 .05(3 \mathrm{H}, \mathrm{s})$, $3.40(1 \mathrm{H}$, dd. $J 4.5$ and 2.5), $3.75(3 \mathrm{H}, \mathrm{s}), 4.10(1 \mathrm{H}, \mathrm{d}, J 2.5)$, $4.60(1 \mathrm{H}, \mathrm{d}, J 4.5), 5.80(1 \mathrm{H}, \mathrm{d}, J 5)$ and $6.8(1 \mathrm{H} . \mathrm{d}, J 5)$; (conformer b) $0.10(9 \mathrm{H}, \mathrm{s}), 0.15(3 \mathrm{H}, \mathrm{s}), 0.75(9 \mathrm{H}, \mathrm{s}), 0.90(9 \mathrm{H}$, s), $2.11(3 \mathrm{H}, \mathrm{s}), 3.68(3 \mathrm{H}, \mathrm{s}), 4.20(1 \mathrm{H}, \mathrm{d}, J 10) .4 .40(1 \mathrm{H}, \mathrm{d}, J$ 2), $4.70(1 \mathrm{H}, \mathrm{d}, J 2), 5.70(1 \mathrm{H}, \mathrm{d}, J 10)$ and $6.2(1 \mathrm{H} . \mathrm{d} . J 2)$.

Acknowledgements

We thank Zeneca Pharmaceuticals and the SERC for financial assistance and Dr G. A. Morris for the 2D COSY NMR experiments.

References

I J. K. Sutherland, W. J. Watkins, J. P. Bailey, A. K. Chapman and G. M. Davies. J. Chem. Soc., Chem. Commun., 1989. 1386.

2 S. Balasubramanian. G. M. Davies, J. R. Coggins and C. Abell, J. Am. Chem. Soc.. 1991, 113, 8945.

3 J, K. Sutherland, R. C. Whitehead and G. M. Davies. J. Chem. Soc., Chem. Commun., 1993, 464.
4 D. T. Gibson, J. R. Koch and R. E. Kallio, Biochemistry. 1968. 7. 2653 ; V. M. Kobal, D. T. Gibson, R. E. Davies and A. Garaza. J. Am. Chem. Soc. 1973, 95, 4420.

5 T. Hudlicky. J. D. Price and H. F. Olivo. Sinlett. 1991. 645
6 R. M. Coates. P. D. Senter and W. R. Baker. J. Org. Chem., 1982. 47. 3597.

7 T. Sato. J. Otera and N. Nozaki. J. Org. Chem., 1992, 57. 2166.
8 V. V. Rheennan, R. C. Kelly and D. Y. Cha. Tetrahedron Lett. 1976. 28. 1973.

9 M. F. Semmelhack and S. J. Brickner. J. Org. Chem. 1981. 46. 1723.

10 B. H. Lipshultz and J. J. Pegram. Tetrahedron Lett.. 1980. 32. 3343.

11 S. Kim, I. S. Kee. Y. H. Park and J. H. Park, Synlett. 1991. 183.
12 Supplied by A. J. B.

13 N. Nagashima and M. Ohno. Chem. Lett. 1987. 141: Chem. Pharm Bull. 1991, 39, 1972.
14 B. S. Bal and H. W. Pinnck. Heterocycles. 1981, 16. 2091
15 D. R. Boyd. M. R. J. Dorrity. J. F. Malone. R. A. S. McMordie. N. D. Sharma. H. Dalton and P. Williams. J. Chem. Soc. Perkin Trans. I. 1990. 489.
16 M. M. Campbell. M. Sainsbury, R. Yavarzadeh and A. D. Kaye. Tetrahedron. 1984. 40. 2461.

Paper 503566J
Received 5th June 1995
Accepted 30th June 1995

[^0]: \dagger Note For convenience, in the Discussion, the numbering for compounds is that shown in the displayed formulae for 1,2 and $7-15$. In the Experimental section compounds have been named and numbered according to the IUPAC rules of nomenclature.

